Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne\frac{9}{4}\end{matrix}\right.\)
Ta có: \(Q=\frac{\sqrt{x}+2}{-\sqrt{x}+2}+\frac{3\sqrt{x}-4}{2\sqrt{x}-3}+\frac{-7\sqrt{x}+10}{-2x+7\sqrt{x}-6}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(2\sqrt{x}-3\right)}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}+\frac{\left(3\sqrt{x}-4\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}+\frac{-7\sqrt{x}+10}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{2x+\sqrt{x}-6-3x+10\sqrt{x}-8-7\sqrt{x}+10}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{-x+4\sqrt{x}-4}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{-\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}-2}{2\sqrt{x}-3}\)
b) Để Q<-4 thì Q+4<0
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}-3}+\frac{4\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
Trường hợp 1: \(\left\{{}\begin{matrix}9\sqrt{x}-14>0\\2\sqrt{x}-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}>14\\2\sqrt{x}< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>\frac{14}{9}\\\sqrt{x}< \frac{3}{2}\end{matrix}\right.\)
⇔Loại vì \(\frac{14}{9}>\frac{3}{2}\)
Trường hợp 2: \(\left\{{}\begin{matrix}9\sqrt{x}-14< 0\\2\sqrt{x}-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}< 14\\2\sqrt{x}>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< \frac{14}{9}\\\sqrt{x}>\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< \frac{196}{81}\\x>\frac{9}{4}\end{matrix}\right.\Leftrightarrow\frac{9}{4}< x< \frac{196}{81}\)
Kết hợp ĐKXĐ, ta được:
\(\frac{9}{4}< x< \frac{196}{81}\)
Vậy: Để Q<-4 thì \(\frac{9}{4}< x< \frac{196}{81}\)
\(B=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\left(ĐKXĐ:x\ne4;x\ne9;x\ge0\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{2-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{3-\sqrt{x}}\)
\(B< -1\)\(\Leftrightarrow\) \(\frac{1}{3-\sqrt{x}}< -1\)\(\Rightarrow\sqrt{x}-3< 1\Leftrightarrow x< 16\)
Mặt khác : Vì \(B< -1< 0\)nên \(3-\sqrt{x}< 0\Rightarrow x>9\)
Vậy để \(B< -1\)thì \(9< x< 16\)
\(2B\in Z\Leftrightarrow B\in Z\)
\(\Leftrightarrow\frac{1}{3-\sqrt{x}}\in Z\)=> \(3-\sqrt{x}\inƯ\left(1\right)\)
\(\Rightarrow3-\sqrt{x}\in\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{16\right\}\)( Loại x = 4 vì không thoả mãn điều kiện)
Xin lỗi vì để bài mình ghi lộn :))
Còn lại thì ổn rồi :))
a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\left(\sqrt{x}+1\right)}{x-5\sqrt{x}+6}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-4+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{2}{\sqrt{x}-3}\)
b) Ta có: P < -1 <=> \(\frac{2}{\sqrt{x}-3}< -1\) <=> \(\frac{2}{\sqrt{x}-3}+1< 0\)
<=> \(\frac{2+\sqrt{x}-3}{\sqrt{x}-3}< 0\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}< 0\)
TH1: \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-3>0\end{cases}}\) <=> \(\hept{\begin{cases}x< 1\\x>9\end{cases}}\)(loại)
TH2: \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-3< 0\end{cases}}\) <=> \(\hept{\begin{cases}x>1\\x< 9\end{cases}}\)
Kết hợp vs đk => S = {x|1 < x < 9 và x \(\ne\)4}
c) Để P nguyên <=> 2 \(⋮\)\(\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Lập bảng: tự làm
@Edogawa Conan phân số thứ 2 bạn bị sai rồi \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=x+2\sqrt{x}-3\)
trước phân số là dấu "-" phải đổi dấu
\(ĐKXĐ:\)
\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)
Vậy...................................................
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)
\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{3}{\left(2+\sqrt{x}\right)}\)