K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Ta có : A = 2 x ( X + 1 )  + X + 1 

= ( X + 1 ) x ( 2 + 1 )

= ( X + 1 ) x 3

Thay X = 99 vào biểu thức ta có :

( 99 + 1 ) x 3 = 300

e, A = 2x ( x + 1 ) + x + 1 tại x =99

    A = 2 x 99 x ( 99 + 1 ) + 99 + 1

    A =  198 x 100 + 100

    A =  19800 + 100

    A =  19900

     

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

a: \(=\left(x-2y\right)^2=\left(18-2\cdot4\right)^2=100\)

30 tháng 7 2021

a, \(A=x\left(3x+1\right)+3x+1=\left(x+1\right)\left(3x+1\right)\)

Thay x = 33 ta được : \(32.100=3200\)

b, \(B=xy+2x+2y+4=x\left(y+2\right)+2\left(y+2\right)=\left(x+2\right)\left(y+2\right)\)

Thay x = 98 ; y = 98 ta được : \(100.100=10000\)

30 tháng 7 2021

10000 nha

17 tháng 12 2023

a: \(A=\left(2x-1\right)\left(4x^2+2x+1\right)-7\left(x^3+1\right)\)

\(=\left(2x\right)^3-1^3-7x^3-7\)

\(=8x^3-1-7x^3-7=x^3-8\)

b: Thay x=-1/2 vào A, ta được:

\(A=\left(-\dfrac{1}{2}\right)^3-8=-\dfrac{1}{8}-8=-\dfrac{65}{8}\)

 

17 tháng 12 2023

Con phần C

18 tháng 12 2023

loading...

c: \(A=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

Để A là số nguyên tố thì x-2=1

=>x=3

 

2 tháng 10 2021

\(M=343-8x^3-64+8x^3=279\\ N=8x^3-1-1+8x^3=16x^3=16\cdot1000=16000\)

2 tháng 10 2021

Bn nên thay nghiệm vào nếu ko mn ko hiểu đc nhé haha

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)

a:

Đặt A=x+x^2+x^3+...+x^99+x^100

Khi x=-1 thì A=(-1)+(-1)^2+(-1)^3+...+(-1)^100

=(-1+1)+(-1+1)+...+(-1+1)

=0

b: Đặt B=x^2+x^4+...+x^100

Khi x=-1 thì B=(-1)^2+(-1)^4+...+(-1)^100

=1+1+...+1

=50