Bài 4. Cho tam giác ABC vuông cân ở A có AB = AC = 4cm
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

Bạn tự vẽ hình.

a, Sử dụng định lí pitago tính được \(BC=5cm\)

b, Dễ dàng chứng minh \(\Delta ABK=\Delta IBK\left(c.g.c\right)\)

=> \(\widehat{BIK}=\widehat{BAK}=90^o\)

=> \(KI\perp BC\)

c, Ta có: \(\hept{\begin{cases}AH\perp BC\\KI\perp BC\end{cases}}\) 

=> AH // KI 

=> \(\widehat{HAI}=\widehat{KIA}\) (1)

Mà AK = KI (do \(\Delta ABK=\Delta IBK\))

=> \(\Delta AKI\) cân tại K

=> \(\widehat{KAI}=\widehat{KIA}\) (2)

Từ (1) và (2) => \(\widehat{HAI}=\widehat{KAI}\)

=> AI là tia phân giác \(\widehat{HAC}\)

d, \(\Delta AEK\) có AI là phân giác => \(\Delta AEK\) cân tại A 

3 tháng 3 2018

a)\(\Delta ABH\) vuông tại H có:

BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)

=> BH=5 cm

BC=BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có:

AH2 + HC2 =AC2 ( đl Pytago)

=> AC2 =122 + 162 =20 cm

b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL  Pytago)

=> BH2 =AB2 - AH2 =132 - 122 =25

=> BH=5 cm

BC= BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)

=> AC2 = 122 + 162 =400

=> AC= 20 cm