K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: \(\widehat{ABM}+\widehat{A}=90^0\)

\(\widehat{ACN}+\widehat{A}=90^0\)

Do đó: \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABC có 

BM là đường cao ứng với cạnh AC

CN là đường cao ứng với cạnh AB

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC

b: Ta có: \(\widehat{ABM}+\widehat{A}=90^0\)

\(\widehat{ACN}+\widehat{A}=90^0\)

Do đó: \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABC có

BM là đường cao ứng với cạnh AC

CN là đường cao ứng với cạnh AB

BM cắt CN tại H

Do đó: AH\(\perp\)BC

30 tháng 3 2022
Ai giúp em với😢

a) Xét ΔANC vuông tại N có

\(\widehat{NAC}+\widehat{ACN}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{ACN}=90^0-\widehat{NAC}=90^0-60^0=30^0\)

Xét ΔANC vuông tại N có \(\widehat{ACN}=30^0\)(cmt)

nên \(AN=\frac{AC}{2}\)(Trong một tam giác vuông, cạnh đối với góc 300 thì bằng nửa cạnh huyền)

hay \(AN=\frac{8}{2}=4cm\)

Áp dụng định lí Pytago vào ΔANC vuông tại N, ta được:

\(AC^2=AN^2+NC^2\)

\(\Leftrightarrow NC^2=AC^2-AN^2=8^2-4^2=64-16=48\)

hay \(NC=4\sqrt{3}cm\)

Vậy: AN=4cm; \(NC=4\sqrt{3}cm\)

Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM∼ΔACN(g-g)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng bằng nhau)

\(\widehat{ACN}=30^0\)(cmt)

nên \(\widehat{ABM}=30^0\)

Vậy: \(\widehat{ABM}=30^0\)

b) Xét ΔABC có:

BM là đường cao ứng với cạnh AC(gt)

CN là đường cao ứng với cạnh AB(gt)

BM\(\cap\)CN={H}

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

⇔AH⊥BC

hay AK⊥BC

Xét ΔCBM vuông tại M và ΔCAK vuông tại K có

\(\widehat{BCM}\) chung

Do đó: ΔCBM∼ΔCAK(g-g)

\(\Rightarrow\widehat{CBM}=\widehat{CAK}\)(hai góc tương ứng)(ddpcm)

c) Ta có: \(AN=\frac{AC}{2}\)(cmt)

nên \(\frac{AN}{AC}=\frac{1}{2}\)

hay \(\frac{AC}{AN}=2\)

Ta có: ΔABM∼ΔACN(cmt)

\(\frac{AB}{AC}=\frac{AM}{AN}\)

hay \(\frac{AB}{AM}=\frac{AC}{AN}\)

Xét ΔABC và ΔAMN có

\(\frac{AB}{AM}=\frac{AC}{AN}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔABC∼ΔAMN(c-g-c)

\(\frac{BC}{MN}=\frac{AC}{AN}\)(hai cặp cạnh tương ứng tỉ lệ)

\(\frac{AC}{AN}=2\)(cmt)

nên \(\frac{BC}{MN}=2\)

hay \(MN=\frac{BC}{2}\)(1)

Xét ΔNBC vuông tại N có NI là đường trung tuyến ứng với cạnh huyền BC(I là trung điểm của BC)

nên \(NI=\frac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Xét ΔMBC vuông tại M có MI là đường trung tuyến ứng với cạnh huyền BC(I là trung điểm của BC)

nên \(MI=\frac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(3)

Từ (1), (2) và (3) suy ra IN=IM=NM

Xét ΔINM có IN=IM=NM(cmt)

nên ΔINM đều(định nghĩa tam giác đều)(đpcm)

8 tháng 10 2015

A B C E F H O I K

a) Nối HK; BK; CK

+) Góc ACK ; góc ABK là góc nội tiếp chắn nửa đường tròn (O;R) => góc ACK = 90; góc ABK = 90o

=> AB | BK; AC | CK

Mà AB | CF; AC | BE nên CF // BK ; BE // CK => T/g BHCK là hình bình hành => 2 đường chéo BC ; HK cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC => I là trung điểm của HK

+) Xét tam giác AKH có: O; I là trung điểm của AK; HK => OI là đường trung bình của tam giác AKH => AH = 2.OI

b) +) Góc BAC là nội tiếp chắn cung BC => Góc BAC = 1/2 góc BOC ( Mối liên hệ giữa góc ở tâm và góc nội tiếp)

=> góc BOC = 2.60= 120. Mà tam giác BOC cân tại O ; OI là đường trung tuyến nên đồng thời là đường p/g và đường cao

=> góc BOI = 1/2 góc BOC = 60

+) Xét tam giác vuông BIO có: BI = OB.sin BOI = R. sin 60\(\frac{R\sqrt{3}}{2}\) => BC = 2.BI = \(R\sqrt{3}\)

Vậy....

28 tháng 8 2021

\(1,\)Gọi I là tâm đường tròn đường kính BC thì I là trung điểm BC và \(MI=IN=BI=CI=\dfrac{1}{2}BC\) (bán kính cùng đường tròn)

\(\Rightarrow\Delta BNC\) vuông tại N và \(\Delta CMB\) vuông tại N

Vậy \(\widehat{BMC}=\widehat{BNC}=90\) độ

\(2,\)Ta có \(H=BM\cap CN\)

Mà BM, CN là đường cao tam giác ABC

Suy ra H là trực tâm

\(\Rightarrow AH\) là đường cao thứ 3

\(\Rightarrow AH\perp BC\)

\(3,\) Gọi giao điểm của tiếp tuyến tại N và AH là K, AH cắt BC tại E.

Ta có \(\widehat{KNH}+\widehat{INH}=90\)

Mà \(\widehat{INH}=\widehat{NCI}\left(NI=IC\right)\)

\(\Rightarrow\widehat{KNH}+\widehat{NCI}=90\)

Mà \(\widehat{NCI}+\widehat{CHE}=90\)

\(\Rightarrow\widehat{KNH}=\widehat{CHE}\)

Mà \(\widehat{CHE}=\widehat{NHK}\left(đđ\right)\)

\(\Rightarrow\widehat{KNH}=\widehat{NHK}\)

\(\Rightarrow\Delta NHK\) cân tại K\(\Rightarrow NK=KH\left(1\right)\)

Ta có \(\widehat{KNH}+\widehat{KNA}=90;\widehat{KHN}+\widehat{NAH}=90\)

\(\Rightarrow\widehat{ANK}=\widehat{NAK}\Rightarrow NK=AK\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow NK=KH=AK\)

\(\Rightarrow\)Đfcm

Tick plzzz, nghĩ nát óc đó

 

 

1: Xét (O) có 

\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BNC}=90^0\)

Xét (O) có 

\(\widehat{BMC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BMC}=90^0\)

2: Xét ΔABC có 

BM là đường cao ứng với cạnh AC

CN là đường cao ứng với cạnh AB

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0