K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

CM,CA là các tiếp tuyến

Do đó: OC là phân giác của góc MOA

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

b: Xét (O) có

CM,CA là các tiếp tuyến

Do đó: CM=CA

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB

Xét ΔCOD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

mà MC=CA và DM=DB

nên \(AC\cdot DB=OM^2=R^2\) không đổi khi M di chuyển trên (O)

c: Xét ΔNAC và ΔNDB có

\(\widehat{NAC}=\widehat{NDB}\)(hai góc so le trong, AC//DB)

\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)

Do đó: ΔNAC đồng dạng với ΔNDB

=>\(\dfrac{NA}{ND}=\dfrac{NC}{NB}=\dfrac{AC}{DB}=\dfrac{CM}{MD}\)

Xét ΔDCA có \(\dfrac{DM}{MC}=\dfrac{DN}{NA}\)

nên MN//AC

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN//AC//BD

20 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

b) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

c) Ta có: AC = CM, BD = DM nên AC.BD = CM.MD

ΔCOD vuông tại O, ta có:

CM.MD = OM2 = R2 (R là bán kính đường tròn O).

Vậy AC.BD = R2 (không đổi).

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔCOD vuông tại O

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2 (cố định).

22 tháng 8 2021

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2 (cố định).

14 tháng 12 2017

a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ

  -   \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\)               ( TÍCH CHẤT 

  -  \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\)             2 TIẾP TUYẾN 

  -  \(AC=CM\)                                                           CẮT NHAU )

\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)

C/M TƯƠNG TỰ TA CÓ  \(\widehat{MOD}=\widehat{BOD}\)

+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)

\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)

\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)

\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)

HAY \(\widehat{COD}=90^0\)

VẬY \(\widehat{COD}=90^0\)

B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )

\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O

MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )

\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)

\(\Rightarrow OI\perp AM\)TẠI  \(I\)

\(\Rightarrow\widehat{MIO}=90^0\)

C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)

\(\Rightarrow\widehat{OKM}=90^0\)

THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)

XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT

VẬY T/G \(OIMK\)LÀ HCN

C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)

TƯƠNG TỰ \(MD=BD\)

KHI ĐÓ: \(AC.BD\) 

\(=CM.MD\)

\(OM\perp CM\)\(CM\)LÀ TIẾP TUYẾN TẠI M )

ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ 

\(CM.MD=MO^2\)

\(\Rightarrow CM.MD=R^2\)  ( VÌ \(MO\)LÀ BÁN KÍNH)

HAY \(AC.BD=R^2\)  MÀ \(R\)KHÔNG ĐỔI

\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)

D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)

\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )

\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)

\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB  )

\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG

XÉT HÌNH THANG \(ACDB\)

CÓ \(CI=DI\)

\(AO=OB\)

\(\Rightarrow OI\)SONG SONG \(AC\)

MÀ \(AC\perp AB\)

\(\Rightarrow OI\perp AB\)  ( 1 ) 

\(MC=MD=\frac{1}{2}CD\)

XÉT \(\Delta\)VUÔNG \(COD\)CÓ   \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)

VÀ \(OI=\frac{1}{2}CD\)

\(\Rightarrow OM=MC=MD\)

\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)

\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\)  ( 2 ) 

TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD

20 tháng 8 2021

a) OC và OD là các tia phân giác của hai góc kề bù \widehat{AOM}\widehat{BOM} nên OC \perp OD.

Vậy \widehat{COD}=90^{\circ}.

b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: CM=AC, DM=BD

Do đó CD=CM+DM=AC+BD.

c) Ta có: AC.BD=CM.MD

Xét tam giác COD vuông tại O và OM \perp CD nên ta có

CM. MD=OM^{2}=R^{2} (R là bán kính của đường tròn O).

Vậy AC.BD=R^2 (không đổi).