Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Ta có: CM+DM=CD
nên CD=CA+DB
b: Từ (1) và (2) suy ra \(\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=90^0\)
=>\(\widehat{COD}=90^0\)
hay ΔCOD vuông tại O
a: Sửa đề: AC+BD=DC
Xét (O) có
CA,MC là tiếp tuyên
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
AC+BD=CM+MD=CD
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>ΔOCD vuông tại O
a/
Ta có
AC=MC; BD=MD (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến 2 tiếp điểm bằng nhau)
=> MC=MD=CD=AC+BD (đpcm)
b/
Ta có
\(AM\perp OC;BM\perp OD\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)
\(\Rightarrow\widehat{COD}=\widehat{AMB}\) (góc có cạnh tương ứng vuông góc)
Mà \(\widehat{AMB}=90^o\)(góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{COD}=90^o\) => tg OCD là tg vuông