\(\Delta ABC\left(\widehat{A}=1v\right)\). Kẻ \(AH\per...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\widehat{BAH}+\widehat{HAC}=90^0\) (1)

\(\widehat{HAC}+\widehat{ACH}=90^0\) (2)

\(\widehat{BAH}+\widehat{ABH}=90^0\) (3)

Từ (1) và (2)

\(\Rightarrow\widehat{BAH}=\widehat{ACH}\left(đpcm\right)\)

Từ (1) và (3)

\(\Rightarrow\widehat{ABH}=\widehat{HAC}\left(đpcm\right)\)

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

11 tháng 11 2017

A H B C

Theo đề ta có: \(\widehat{BAH}=2\widehat{CAH}\Rightarrow\widehat{A}=3\widehat{CAH}\)

\(\widehat{A}=72^o\left(gt\right)\) \(\Rightarrow3\widehat{CAH}=72^o\)

\(\Rightarrow\widehat{CAH}=24\) \(\Rightarrow BAH=24^o.2=48^o\)

Ta lại có: \(\widehat{B}+\widehat{BAH}=90^o\) (định lí của một tam giác vuông)

hay \(\widehat{B}+48^o=90^o\Rightarrow\widehat{B}=42^o\)

Tương tự: \(\widehat{C}+\widehat{CAH}=90^o\)

hay \(\widehat{C}+24^o=90^o\Rightarrow\widehat{C}=66^o\)

Vậy góc B có số đo là \(42^o\)

góc C có số đo là \(66^o\)

11 tháng 11 2017

thanks bn nhaeoeo

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

23 tháng 12 2016

a)

Xét tam giác AHB và tam giác DBH có:

AH = DB (gt)

AHB = DBH (= 900)

BH chung

=> Tam giác AHB = Tam giác DBH (c.g.c)

b)

DB _I_ BC (gt)

AH _I_ BC (gt)

=> DB // AH

c)

Tam giác HAB vuông tại H có:

HAB + HBA = 900

350 + HBA = 900

HBA = 900 - 350

HBA = 550

Tam giác ABC vuông tại A có:

ABC + ACB = 900

550 + ACB = 900

ACB = 900 - 550

ACB = 350

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

19 tháng 3 2021

A B C H

Sửa tam giác ABC cân tại A nhé chứ là tam giác vuông thì chỉ có c.g thôi 

a, Xét tam giác BHA và tam giác AHC ta có : 

AH _ chung 

^BHA = ^AHC = 900

^ABH = ^ACH ( gt ) vì ABC cân tại A

Vậy tam giác BHA = tam giác AHC ( g.c.g )

=> BH = HC ( 2 cạnh tương ứng )

b, Xét tam giác BAH và tam giác CAH ta có : 

BH = HC ( cmt )

^AHB = ^AHC = 900

AH _ chung 

Vậy tam giác BAH = tam giác CAH ( c.g.c )

=> ^BAH = ^CAH ( 2 góc tương ứng )

a) Xét tam giác ABH và tam giác ACH vuông tại H có:

+) AB = AC (chứng minh trên)

+) Góc B = góc C (cmt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=> HB = HC (2 cạnh tương ứng)

b)  Vì tam giác ABH = tam giác ACH nên:

=> Góc BAH = góc CAH (2 góc tương ứng)

17 tháng 11 2016

Ta có hình vẽ:

Gọi phân giác C cắt AH tại M

Ta có: góc B + góc C = 900

Ta có: góc B + góc BAH = 900

=> góc BAH = góc C

Theo giả thiết, AI là phân giác của góc BAH

nên góc BAI = góc IAH

Theo giả thiết, CI là phân giác của góc C

nên góc HCI = góc ICA

Vì góc BAH = góc C nên góc IAH = góc HCI (1)

Ta có: góc IMA = góc HMC (đối đỉnh) (2)

Ta có: tổng ba góc của 1 tam giác bằng 1800 (3)

Từ (1),(2),(3) => góc AIM = góc MHC = 900

Vậy góc AIC = 900 (đpcm)

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC