Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5.\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5.\left(x-y-2z\right).\left(x-y+2z\right)\)
\(x^2-z^2+y^2-2xy=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
\(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
a) 5x2 - 10xy + 5y2
= 5 (x2 - 2xy + y2)
= 5 (x - y)2
b) x2 - z2 + y2 - 2xy
= (x2 + y2 - 2xy) - z2
= (x2 - 2xy + y2) - z2
= (x - y)2 - z2
= (x - y + z)(x - y - z)
c) x2 - 6xy - 25z2 : hinh nhu de bi sai , ban xem lai giup minh
d) x2 - 2xy - 4z2 + y2
= (x2 - 2xy + y2) - 4z2
= (x - y)2 - (2z)2
= (x - y + 2z)(x - y - 2z)
Chuc ban hoc tot
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
Áp dụng HĐT bình phương của 1 tổng ta có:\(x^2+2xy+y^2=x^2+y^2+2xy=1+2xy\)Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\) (HĐT bình phương của 1 hiệu)
\(\Rightarrow2xy\le x^2+y^2\) hay \(2xy\le1\)
\(\Rightarrow\left(x+y\right)^2=1+2xy\le1+1=2\)
\(\Rightarrow MAX_{\left(x+y\right)^2}=2\)
Áp dụng BĐT BCS, ta có:
\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)
\(2\ge\left(x+y\right)^2\)
\(\left(x+y\right)^2\le2\)
Vậy: \(Max_{\left(x+y\right)^2}=2\) khi \(x^2+y^2=1\)
\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
(4x - 5)2 + (4x - 5)(x2 - x - 2) + (x2 - x - 2)2 = (x2 + 3x - 7)2
<=> (4x - 5)2 + 2(4x - 5)(x2 - x - 2) + (x2 - x - 2)2 - (x2 + 3x - 7)2 = (4x - 5)(x2 - x - 2)
<=> (4x - 5 + x2 - x - 2)2 - (x2 + 3x - 7)2 = (4x - 5)(x2 - x + 2x - 2)
<=> (x2 + 3x - 7)2 - (x2 + 3x - 7) = (4x - 5)[x(x - 1) + 2(x - 1)]
<=> (4x - 5)(x - 1)(x + 2) = 0
<=> \(\left[{}\begin{matrix}4x-5=0\\x-1=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=1\\x=-2\end{matrix}\right.\)
Vậy S = {- 2 ; 1 ; 1,25}
ĐS: 1,25
\(\left\{{}\begin{matrix}a=4x-5\\b=x^2-x-2\\a+b=x^2+3x-7\end{matrix}\right.\) nên bổ xungchức căn lề phải cho cái này!
\(\Leftrightarrow a^2+ab+b^2=\left(a+b\right)^2\)
\(\Leftrightarrow ab=2ab\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{5}{4}\\\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\end{matrix}\right.\)
= ((x-y)\(^2\))\(^7\) = (x-y)\(^{14}\)
cho x=y =1 \(\Rightarrow\)(1-1)\(^{14}\)=0
vậy tổng các hệ số =0
Khó nhỉ
Yeah