Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
a ) ( x + 1 ) x ( x2 - 4 ) = 0
vậy chắc chắn 1 biểu thức phải bằng 0 để có kết quả đúng . vậy chỉ có thể là x2 - 4 = 0
vì phép còn lại là x + 1 = số nguyên dương
x2 - 4 = 0
x = 2
b ) x15 = x
vậy quá rõ x = 1 , 0
vì chỉ có 2 số này nhân bao nhiêu lần chính nó cũng bằng nó
c ) ( x - 5 ) 4 = ( x - 5 )6
4 x - 625 = 6 x - 15625
4 x + 15625 - 625 = 6 x
4 x + 15000 = 6 x
15000 = 2 x
x = 7500
d ) làm sau
a. \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
TH1: \(x+1=0\Rightarrow x=-1\)
TH2: \(x-2=0\Rightarrow x=2\)
TH3: \(x+2=0\Rightarrow x=-2\)
Vậy:...
b) \(x^{15}=x\)
\(\Rightarrow x\in\left\{0;1;-1\right\}\)
c) \(\left(x-5\right)^4=\left(x-5\right)^6\)
TH1:\(x-5=1\Rightarrow x=6\)
TH2: \(x-5=-1\Rightarrow x=4\)
TH3: \(x-5=0\Rightarrow x=5\)
d) \(\left(2x+1\right)^3=125\)
\(\Leftrightarrow2x+1=\sqrt[3]{125}=5\)
\(\Leftrightarrow x=2\)
\(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
\(b,x^6=x^2\)
\(x^6-x^2=0\)
\(x^2\cdot\left(x^4-1\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x^4-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(c\text{}\text{}\text{}\text{},\left(x-2\right)\cdot\left(x-5\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d,x^{10}-x^5=0\)
\(x^5\cdot\left(x^5-1\right)=0\)
\(\orbr{\begin{cases}x^5=0\\x^5=1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
\(e,\left(x-5\right)^4=\left(x-5\right)^6\)
\(\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\left(x-5\right)^4\cdot\left[1-\left(x-5\right)^2\right]=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm1+5\end{cases}}}\)
\(\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
\(\left(2x+1\right)^3=125\Rightarrow\left(2x+1\right)^3==5^3\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1=4\Rightarrow x=4:2=2\)
\(x^6=x^2\Rightarrow x^2.x^4=x^2\)Vì vậy nên \(x=\pm1\)
\(\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\Rightarrow x=0+2=5\\x-5=0\Rightarrow X=0+5=5\end{cases}}\)
a ) Ta có : 4(x - 5) - 3(x + 7) = -19
<=> 4x - 20 - 3x - 21 = -19
=> x - 41 = -19
=> x = -19 + 41
=> x = 22
b) Ta có " 7(x - 3) - 5(3 - x) = 11x - 5
<=> 7x - 21 - 15 + 5x = 11x - 5
<=> 12x - 36 = 11x - 5
=> 12x - 11x = -5 + 36
=> x = 31
\(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
\(x^{15}=x\Leftrightarrow x\in\left\{-1;0;1\right\}\)
\(\left(2x+1\right)^3=125\)
\(\Leftrightarrow\left(2x+1\right)^3=5^3\)
\(\Leftrightarrow2x+1=5\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
\(\Leftrightarrow\hept{\begin{cases}x-5=-1\\x-5=0\\x-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\x=5\\x=6\end{cases}}\)
\(\text{Vậy:}\)\(x\in\left\{4;5;6\right\}\)
\(2^x.4=128\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5.\)
\(x^{15}=x\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
\(\left(2x+1\right)^3=125\)
<=> \(\left(2x+1\right)^3=5^3\)
<=> \(2x+1=5\)
<=> \(x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
<=> \(\left(x-5\right)^6-\left(x-5\right)^4=0\)
<=> \(\left(x-5\right)^4.\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
Giải ra được x = 5 ; x = 6 ; x = 4 .