K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

C(x) có nghiệm khi

x4 + 2x2 + 8 = 0

mà x4 + 2x2 + 8 = x2(x2 + 2) + 8 \(\ge8>0\) 

=> C(x) vô nghiệm

28 tháng 5 2021

\(C\left(x\right)=x^4+2x^2+8\)

\(\text{Ta có:}\)\(x^4\ge0\)

                \(2x^2\ge0\)

\(\rightarrow x^4+2x^2\ge0\)

\(\rightarrow x^4+2x^2+8\ge8\)

\(\rightarrow C\left(x\right)\ge8\)

\(\rightarrow C\left(x\right)>0\ne0\)

\(\rightarrow C\left(x\right)\text{không có nghiệm nào thỏa mãn}\)

\(\text{Vậy đa thức vô nghiệm}\)

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

31 tháng 3 2018

1/

a/ Đặt f (x) = x2 - 3

Khi f (x) = 0

=> \(x^2-3=0\)

=> \(x^2=3\)

=> \(x=\sqrt{3}\)

Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.

b/ Đặt g (x) = x2 + 2

Khi g (x) = 0

=> \(x^2+2=0\)

=> \(x^2=-2\)

=> \(x\in\varnothing\)

Vậy x2 + 2 vô nghiệm.

c/ Đặt P (x) = x2 + (x2 + 3)

Khi P (x) = 0

=> \(x^2+\left(x^2+3\right)=0\)

=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)

Vậy x2 + (x2 + 3) vô nghiệm.

d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)

Khi Q (x) = 0

=> \(2x^2-\left(1+2x^2\right)+1=0\)

=> \(2x^2-\left(1+2x^2\right)=-1\)

=> \(2x^2-1-2x^2=-1\)

=> -1 = -1

Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.

e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)

Khi h (x) = 0

=> \(\left(2x-1\right)^2-16=0\)

=> \(\left(2x-1\right)^2=16\)

=> \(2x-1=4\)

=> 2x = 5

=> \(x=\frac{5}{2}\)

Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +bBài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,yBài 3: Cho đa thức f(x) = x2 +4x -5a) Số -5 có phải nghiệm của đa thức f(x) ko?b) Viết tập hợp S tất cả các nghiệm của f(x)Bài 4: Thu gọn rồi tìm...
Đọc tiếp

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>

Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +b

Bài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,y

Bài 3: Cho đa thức f(x) = x2 +4x -5

a) Số -5 có phải nghiệm của đa thức f(x) ko?

b) Viết tập hợp S tất cả các nghiệm của f(x)

Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:

a) f(x) = x(1-2x) + (2x -x +4)

b) g(x)= x(x-5) -x(x+2) +7x

c) h(x) = x(x-1) +1

Bài 5: Cho 

f(x)=x-101x7+101x6-101x5+...+101x2 -101x +25 . Tính f(100)

Bài 6: Cho f(x) = ax+ bx +c . Biết 7a +b = 0

Hỏi f(10) , f(-3) có thể là số âm ko?

Bài 7: Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0

Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8

Bài 8: Cho f(x)= ax+ 4x(x -1) +8 

g(x) = x3 -4x(bx +1) +c -3

trong đó a,b,c là hăngf . Xác định a,b,c để f(x) = g(x)

Bài 9: Cho f(x) = 2x+ ax +4 ( a là hằng)

g(x)= x2 -5x - b ( b là hằng)

Tìm các hệ số a,b sao cho f(1)=g(2) ;f(-1)= f(5)

 

 

 

1

rtyuiytre

4 tháng 8 2020

a,Ta có: 

\(f\left(-1\right)=0\)

\(\Leftrightarrow m.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1=0\)

\(\Leftrightarrow m.\left(-1\right)+1-1+1=0\)

\(\Leftrightarrow-m+1=0\)

\(\Leftrightarrow-m=-1\)

\(\Leftrightarrow m=1\)

Vậy \(m=1\)thì đa thức có nghiệm là -1 

b,Ta có:

\(g\left(1\right)=0\)

\(\Leftrightarrow1^4+m^2.1^3+m.1^2+m.1-1=0\)

\(\Leftrightarrow1+m^2+m+m-1=0\)

\(\Leftrightarrow m^2+2m=0\)

\(\Leftrightarrow m.\left(m+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=0\\m=-2\end{cases}}\)

Vậy \(m=\left\{0,-2\right\}\)thì đa thức có nghiệm là 1 

c, Ta có:

\(h\left(-3\right)=0\)

\(\Leftrightarrow\left(-3\right)^3-2.\left(-3\right)^2+m=0\)

\(\Leftrightarrow-27-2.9+m=0\)

\(\Leftrightarrow-27-18+m=0\)

\(\Leftrightarrow-45+m=0\)

\(\Leftrightarrow m=45\)

Vậy \(m=45\)thì đa thức có nghiệm là -3

4 tháng 8 2020

a) f(x) = m.x3 + x2 + x + 1 

f(x) có nghiệm x = -1

=> f(-1) = m(-1)3 + (-1)2 + (-1) + 1 = 0

=>           -m + 1 - 1 + 1 = 0

=>           -m + 1 = 0

=>           -m = -1

=>            m = 1

Vậy với m = 1 , f(x) có nghiệm x = -1

b) g(x) = x4 + m2.x3 + m.x2 + m.x - 1

g(x) có nghiệm x = 1

=> g(1) = 14 + m2.13 + m.12 + m.1 - 1 = 0

=>            1 + m2 + m + m - 1 = 0

=>            m2 + 2m = 0

=>            m( m + 2 ) = 0

=>            m = 0 hoặc m + 2 = 0

=>            m = 0 hoặc m = -2

Vậy với m = 0 hoặc m = -2 , g(x) có nghiệm x = 1

c) h(x) = x3 - 2x2 + m

h(x) có nghiệm x = -3

=> h(-3) = (-3)3 - 2(-3)2 + m = 0

=>             -27 - 18 + m = 0

=>            -45 + m = 0

=>            m = 45

Vậy với m = 45 , h(x) có nghiệm x = -3

2 tháng 6 2020

a) A(x) = 2x - 6

Đa thức có nghiệm <=> 2x - 6 = 0

                               <=> 2x = 6

                               <=> x = 3

Vậy nghiệm của đa thức = 3 

b) B(x) = 52 -10x

Đa thức có nghiệm <=> 52 - 10x = 0

                               <=> 25 - 10x = 0

                               <=> 10x = 25

                               <=> x = 5/2

Vậy nghiệm của đa thức = 5/2

c) C(x) = 33 - 3x

Đa thức có nghiệm <=> 33 - 3x = 0

                               <=> 27 - 3x = 0

                               <=> 27 = 3x 

                              <=> x = 9 

Vậy nghiệm của đa thức = 9

d) D(x) = x4 + 1

Ta có \(x^4\ge0\forall x\)

1 > 0

=> x4 + 1 > 0 với mọi x

=> Vô nghiệm 

8 tháng 6 2020

a) Ta có A(x) = 0

=> 2x - 6 = 0

=> x = 3

Vậy ngiệm của A(x) là x = 3

b) Ta có : B(x) = 0

=> 52 - 10x = 0

=> 10x = 25

=> x = 2,5

Vậy ngiệm của B(x) là x = 2,5 

c) Ta có : C(x) = 0

=> 3x3 - 3x = 0

=> 3x(x2 - 1) = 0

=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy x = 0 ; x = 1 ; x = -1 là ngiệm của C(x)

d) Ta có : x4 \(\ge0\forall x\)

=> \(x^4+1\ge1>0\)

Đa thức D(x) vô nghiệm

1 tháng 5 2018

1. Ta có :

f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0

f(x) = m - 1 - 3m + 2 = -2m + 1 = 0

\(\Rightarrow m=\frac{1}{2}\)

1 tháng 5 2018

2.

a) M(x) = -2x2 + 5x = 0 

\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)

b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0

N(x) = ( x + 2 ) . ( x - 1/2 ) = 0 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014

vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm

13 tháng 8 2015

Bài 1 :

a) x^2 + 5x = 0 

 x(x+ 5 ) = 0 

=> x = 0 hoặc x + 5 = 0 

=> x = 0 và x = -5 

b tương tự 

c ) 3x^2 - 5x - 8 = 0 

3x^2 - 8x + 3x - 8 = 0 

=>  x ( 3x - 8 ) + 3x - 8 = 0 

=> ( x+ 1 )( 3x - 8 ) = 0 

=> x+ 1 = 0 hoặc 3x - 8 = 0 

=> x = -1 hoặc x = 8/3

(+) d tương tự 

 

Bài 2 : 

 x^2 + 2x + 7 = x^2 + x + x + 1 + 6 = x(x+1)+ x +1  + 6 = ( x+ 1 )(x+1) +6  = ( x+ 1 )^2 + 6 

Vì ( x+ 1 )^2 >=0 => ( x+ 1 )^2 + 6 > 0 

=> vô nghiệm 

7 tháng 7 2016

C(x)= 2x-3=0 hoac 5x+7=0

        2x=0+3        5x=0-7

        2x=3            5x=-7

         x=3:2            x=-7:5

          x=1.5            x=-1.4

7 tháng 7 2016

a.

\(\left(2x-3\right)\times\left(5x+7\right)=0\)

TH1:

\(2x-3=0\)

\(2x=3\)

\(x=\frac{3}{2}\)

TH2:

\(5x+7=0\)

\(5x=-7\)

\(x=-\frac{7}{5}\)

Vậy \(C\left(x\right)\) có nghiệm là \(\frac{3}{2}\) hoặc \(-\frac{7}{5}\)

b.

\(\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)

\(15x^5+4x^2-8-15x^5+x+8=0\)

\(\left(15x^5-15x^5\right)+4x^2+x+\left(8-8\right)=0\)

\(x\left(4x-1\right)=0\)

TH1:

\(x=0\)

TH2:

\(4x-1=0\)

\(4x=1\)

\(x=\frac{1}{4}\)

Vậy \(D\left(x\right)\) có nghiệm là \(0\) hoặc \(\frac{1}{4}\)

c.

\(\left(5x^7-8x^2\right)-\left(4x^7+4^2\right)-\left(x^7+4\right)=0\)

\(5x^7-8x^2-4x^7-16-x^7-4=0\)

\(\left(5x^7-4x^7-x^7\right)-8x^2-\left(16-4\right)=0\)

\(-8x^2-12=0\)

\(-8x^2=12\)

\(x^2=-\frac{12}{8}\)

mà \(x^2\ge0\) với mọi x

=> \(E\left(x\right)\) vô nghiệm

7 tháng 7 2016

\(a,C\left(x\right)=\left(2x-3\right)\left(5x+7\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}2x-3=0\\5x+7=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{7}{5}\end{array}\right.\)

Vậy \(x=\frac{3}{2}\) và \(x=-\frac{7}{5}\) là nghiệm của đa thức C(x)

\(b,D\left(x\right)=\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)

\(\Leftrightarrow15x^5+4x^2-8-15x^5+x+8=0\)

\(\Leftrightarrow4x^2+x=0\) \(\Leftrightarrow x\left(4x+1\right)=0\)  \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\4x+1=0\end{array}\right.\)  \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{4}\end{array}\right.\)

Vậy \(x=0\) và \(x=-\frac{1}{4}\) là nghiệm đa thức D(x)

\(c,E\left(x\right)=\left(5x^7-8x^2\right)-\left(4x^7+4x^4\right)-\left(x^7+4\right)=0\)

\(\Leftrightarrow5x^7-8x^2-4x^7-4x^4-x^7-4=0\)

\(\Leftrightarrow-8x^2-4x^4-4=0\)

\(\Leftrightarrow-4\left(2x^2+x^4+1\right)=0\)

\(\Leftrightarrow2x^2+x^4+1=0\) \(\Leftrightarrow x^4+x^2+x^2+1=0\) 

\(\Leftrightarrow x^2\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=0\) \(\Leftrightarrow x^2+1=0\) \(\Leftrightarrow x^2=-1\) \(\Rightarrow x\in\varnothing\)

Vậy E(x) vô nghiệm