Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=\left(-7+2x^2+x^4+3x^5-x^3\right)+\left(-x+x^4+2x^3-7\right)-\left(2x-x^4-3x^3\right)\)
\(=3x^5+3x^4+4x^3+2x^2-3x-14\)
\(P\left(x\right)=x^4+2x^2+3=x^4+2x^2+1+2=\left(x^2+1\right)^2+2\ge2>0\forall x\)
Đặt P(x)=0
Vì \(x^4>=0\)
và \(2x^2>=0\)
nên P(x)=x4+2x2+3>=3>0
=>P(x) vô nghiệm
Dễ
Thế
Mà
Cũnhoir
Dc
Ạ
Chịu
Chắc
Phải
Ngu
Lamqs
Mới
Hỏi
Câu
Này
Với x = 1
Ta có: 8(1) = 1.4+2.1.3-2.1.2-6.1-5=-5\(\ne\)0
Với x = -1
Ta có:8(-1)=(-1).4+2.(-1).3-2.(-1).2-6.(-1)-5 =-5\(\ne\)0
Với x = 5
Ta có:8(5)=5.4+2.5.3-2.5.2-6.5-5=-5\(\ne\)0
Với x = -5
Ta có:8(-5)=(-5).4+2.(-5).3-2.(-5).2-6.(-5)-5=-5\(\ne\)0
Vậy trong các số trên không có số nào là nghiệm của đa thức 8(x)
bài của bn cho hơi ki lạ một chút nhưng nếu đáp án của mk đúng thì 1 tick cho mk nk!!!!!!
C(x) có nghiệm khi
x4 + 2x2 + 8 = 0
mà x4 + 2x2 + 8 = x2(x2 + 2) + 8 \(\ge8>0\)
=> C(x) vô nghiệm
\(C\left(x\right)=x^4+2x^2+8\)
\(\text{Ta có:}\)\(x^4\ge0\)
\(2x^2\ge0\)
\(\rightarrow x^4+2x^2\ge0\)
\(\rightarrow x^4+2x^2+8\ge8\)
\(\rightarrow C\left(x\right)\ge8\)
\(\rightarrow C\left(x\right)>0\ne0\)
\(\rightarrow C\left(x\right)\text{không có nghiệm nào thỏa mãn}\)
\(\text{Vậy đa thức vô nghiệm}\)