K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

\(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

\(\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)=\left(-2;7\right)\)

\(\left(0;12\right)\cap[5;+\infty)=[5;12)\)

\(R\cap\left[-1;1\right]=\left[-1;1\right]\)

20 tháng 9 2021

undefined

3 tháng 10 2021

Dễ thấy nếu \(A\cap B=\varnothing\Rightarrow A\in[-3;3)\Rightarrow\left\{{}\begin{matrix}m-1\ge-3\\\dfrac{m+3}{2}< 3\end{matrix}\right.\)

                                                               \(\Leftrightarrow-2\le m< 3\)

Do đó để \(A\cap B\ne\varnothing\Rightarrow m\notin[-2;3)\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge3\end{matrix}\right.\)

 

2 tháng 4 2017

a) (0, 7)

b) (2, 5)

c) [3, +∞)


26 tháng 7 2017

a)(0,7).

b)(2,5).

c)(3,\(+\infty\)).

17 tháng 9 2023

\(A=\left(-3;-1\right)\cup\left(1;2\right)\)

\(B=\left(-1;+\infty\right)\)

\(C=\left(-\infty;2m\right)\)

\(A\cap B=\left(-3;-1\right)\)

Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)

\(\Leftrightarrow m\ge-\dfrac{1}{2}\)

Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài

16 tháng 5 2017

a) (\(-2;3\)]

b) \(\left(-15;14\right)\)

c) \(\left(0;5\right)\)

d) (\(-\infty;4\)] \(\cup\) [\(1;+\infty\))

30 tháng 7 2018

a) (−∞;3]∩(−2;+∞)=(−2;3](−∞;3]∩(−2;+∞)=(−2;3]

b) (0;12)∩[5;+∞)=(0;5)(0;12)∩[5;+∞)=(0;5)

c) (−15,7)∪(−2;14)=(−2;1)∪(3;7)(−15,7)∪(−2;14)=(−2;1)∪(3;7)

d) R∖(−1;1)=(−∞;−1]∪[1;+∞)

Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

17 tháng 6 2021

\(\left(-3;5\right)\cap\left(2;4\right)=\left(-3;5\right)\)

\((-\infty;3]\cap\left[3;5\right]=(-\infty;5]\)

\(\left(-4;2\right)\cap[2;5)=\left(-4;5\right)\)

NV
21 tháng 9 2021

a.

\(\left(-\infty;2m+1\right)\subset\left(-\infty;1\right)\Rightarrow2m+1\le1\)

\(\Rightarrow m\le0\)

b.

\((-\infty;2-3m]\cap[2;+\infty)=\varnothing\Rightarrow2-3m< 2\)

\(\Rightarrow m>0\)

c.

\(\left[-1;3\right]\cap\left(2m-5;2m+4\right)=\varnothing\Rightarrow\left[{}\begin{matrix}2m-5\ge3\\2m+4\le-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\m\le-\dfrac{5}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........