Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a.b= 3/5; b.c=4/5; a.c=3/4
b) a.( a+b+c)=-12
b.( a+b+c )=18
c.( a+b+c)= 30
c) a.b=c
b.c=4.a
a.c=9.b
a,a.b/b.c=a/c=3/4
a/c.a.c=a.a=3/4*3/4
=>a=3/4hoặc-3/4
rồi suy a,b,c
a.( a+b+c)=-12=A
b.( a+b+c )=18=B
c.( a+b+c)= 30=C
A+B+C=(a+b+c)(a+b+c)=36
a+b+c=6hoặc -6
ghép vào A,B,C suy ra a,b,c
c,a.b.b.c.a.c=c.4.a.9.b
a.b.c=4.9=36
a.b=c
=>a.b.c=c.c=36
=>c=6 hoặc -6
=>a,b,c
hồi ôn thi học sinh giỏi chị gặp bài này...đam bảo đúng
a) ab=3/5; bc=4/5; ca=3/4
=> (abc)2 = (3/4).(4/5).(3/4)=9/25
=>abc=3/5
Ta có: abc=3/5
ab=3/5
=> c=1
Ta có: abc=3/5
bc=4/5
=> a=3/4
Ta có: abc=3/5
ca=3/4
=> b=4/5
Vậy a=3/4; b=4/5; c=1
ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= 2*3 = 6 (thỏa)
_với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= -2*3 = -6 (thỏa)
_với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
a) \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ca=\dfrac{3}{4}\)
\(\Leftrightarrow ab.bc.ca=\dfrac{3}{5}.\dfrac{4}{5}.\dfrac{3}{4}\)
\(\Leftrightarrow a^2.b^2.c^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2=\left(-\dfrac{3}{5}\right)^2\)
+ Khi \(\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2\Leftrightarrow abc=\dfrac{3}{5}\)
Vậy \(\left\{{}\begin{matrix}a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\)
+ Khi \(\left(abc\right)^2=\left(-\dfrac{3}{5}\right)^2\Leftrightarrow abc=-\dfrac{3}{5}\)
Vậy \(\left\{{}\begin{matrix}a=\left(-\dfrac{3}{5}\right):\dfrac{4}{5}=-\dfrac{3}{4}\\b=\left(-\dfrac{3}{5}\right):\dfrac{3}{4}=-\dfrac{4}{5}\\c=\left(-\dfrac{3}{5}\right):\dfrac{3}{5}=-1\end{matrix}\right.\)
b) \(a\left(a+b+c\right)=-12;b\left(a+b+c\right)=18;c\left(a+b+c\right)=30\)
\(\Leftrightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(-12\right)+18+30\)
\(\Leftrightarrow\left(a+b+c\right)\left(a+b+c\right)=36\)
\(\Leftrightarrow\left(a+b+c\right)^2=6^2=\left(-6\right)^2\)
+ Khi \(\left(a+b+c\right)^2=6^2\Leftrightarrow a+b+c=6\)
Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):6=-2\\b=18:6=3\\c=30:6=5\end{matrix}\right.\)
+ Khi \(\left(a+b+c\right)^2=\left(-6\right)^2\Leftrightarrow a+b+c=-6\)
Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):\left(-6\right)=2\\b=18:\left(-6\right)=-3\\c=30:\left(-6\right)=-5\end{matrix}\right.\)
c) \(ab=c;bc=4a;ac=9b\)
Kiểm tra lại đề bài xem có thiếu điều kiện không.
Cứ theo khẳng định của Nguyễn Thị Ngọc Linh thì đề c) không thiếu gì. Xin giải tiếp.
c) \(ab=c;bc=4a;ac=9b\)
\(\Leftrightarrow ab.bc.ac=c.4a.9b\)
\(\Leftrightarrow\left(abc\right)\left(abc\right)=36\left(abc\right)\)
\(\Leftrightarrow abc=36\)
+ Vì \(ab=c\Leftrightarrow cc=36\Leftrightarrow c^2=6^2=\left(-6\right)^2\)
+ Vì \(bc=4a\Leftrightarrow a.4a=36\Leftrightarrow4a^2=36\Leftrightarrow a^2=9=3^2=\left(-3\right)^2\)
+ Vì \(ac=9b\Leftrightarrow b.9b=36\Leftrightarrow9b^2=36\Leftrightarrow b^2=4=2^2=\left(-2\right)^2\)
Vậy \(\left\{{}\begin{matrix}a_1=3;a_2=-3\\b_1=2;b_2=-2\\c_1=6;c_2=-6\end{matrix}\right.\)
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
Ta có :
ab = c ; bc = 4a ; ac = 9b
=> ab . bc . ac = c . 4a . 9b
=> ( abc )2 = 36 a . b . c
Với abc ≠ 0
=> abc = 36 , mà ab = c
=> c2 = 36 => c ∈ { -6 ; 6 }
Vì abc = 36 mà bc = 4a
=> 4a2 = 36 => a2 = 9
=> a ∈ { -3 ; 3 }
Vì abc = 36 mà ac = 9b
=> 9b2 = 36
=> b2 = 4 => b ∈ { -2 ; 2 }
Với abc = 0
Xét a = 0 mà ab = c ; bc = 4a ; ac = 9b
=> a = b = c = 0
Xét b = 0 , tương tự ta cũng suy ra được a = b = c = 0
Xét c = 0 , ta cũng suy ra được a = b = c = 0
~~Học tốt~~