
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)
c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)
\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)
Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)


a,\(2^{31}=2^{30}.2=\left(2^3\right)^{10}.2=8^{10}.2< 9^{10}.3=\left(3^2\right)^{10}.3=3^{20}.3=3^{21}\)
b,\(2^{99}=\left(2^3\right)^{33}=8^{33}>3^{21}\)
c,\(31^{14}< 32^{14}=\left(2^5\right)^{14}=2^{70}< 2^{72}=\left(2^4\right)^{18}=16^{18}< 17^{18}\)
d,\(63^{10}< 64^{10}=\left(2^6\right)^{10}=2^{60}< 2^{65}=\left(2^5\right)^{13}=32^{13}< 33^{13}\)


Ta có:
3.24^10=3^11.4^15
=> 4^30=4^15.4^15
4^15>3^11 (vì phần nguyên bé và mũ cũng bé nên ta có:4^15>3^11)
=>3.24^10<<4^30<<<2^30+3^20+4^30

a, 920=(92)10=8110
vì 81 <9999 suy ra 920<999910
b, vì 3>2 suy ra 321>221

Bài 3:
a,\(99^{20}\)và\(999^{10}\)
Ta có:\(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì 9801>999 nên \(9801^{10}>999^{10}\)hay \(99^{20}>999^{10}\)
Vậy...
Trả lời:
a, Ta có: 9920 = ( 992 )10 = 980110; 99910
Ta thấy: 9801 > 999
=> 980110 > 99910
Vậy 9920 > 99910
b, Ta có: 321 = 320 . 3 = ( 32 )10 . 3 = 910 . 3
231 = 230 . 2 = ( 23 )10 . 2 = 810 . 2
Ta thấy: 9 > 8
=> 910 > 810
=> 910 . 3 > 810 . 2
Vậy 321 > 231