K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Ta có: \(2x=3y=6z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau là có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\Rightarrow\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}=\frac{1830}{1}=1830\)

\(\frac{x}{\frac{1}{2}}=1830\Rightarrow x=1830.\frac{1}{2}=915\)

\(\frac{y}{\frac{1}{3}}=1830\Rightarrow y=1830.\frac{1}{3}=610\)

\(\frac{z}{\frac{1}{6}}=1830\Rightarrow z=1830.\frac{1}{6}=305\)

Vậy \(x=915;y=610;z=305\)

24 tháng 9 2017

Ta có : \(2x=3y=6z\)

\(\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}=\frac{1830}{1}=1830\)

\(2x=1830\Leftrightarrow x=915\)

\(3y=1830\Leftrightarrow y=610\)

\(6z=1830\Leftrightarrow z=305\)

Vậy \(x=915\)

       \(y=610\)

       \(z=305\)

17 tháng 12 2017

Ta có:

\(2x=3y=6z\)

\(\Rightarrow\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{6z}{6}\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}=z=\dfrac{x+y+z}{3+2+1}=\dfrac{1830}{6}=305\)

Vậy \(\left\{{}\begin{matrix}x=305.3=915\\y=305.2=610\\z=305.1=305\end{matrix}\right.\)

17 tháng 12 2017

Giải:

Ta có: \(2x=3y=6z\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}_{\left(1\right)}\)\(x+y+z=1830_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x+y+z}{2+3+6}=\dfrac{1830}{11}.\)

Từ đó:

\(\dfrac{x}{2}=\dfrac{1830}{11}\Rightarrow x=\dfrac{2.1830}{11}=\dfrac{3660}{11}.\)

\(\dfrac{y}{3}=\dfrac{1830}{11}\Rightarrow y=\dfrac{1830.3}{11}=\dfrac{5490}{11}.\)

\(\dfrac{z}{6}=\dfrac{1830}{11}\Rightarrow x=\dfrac{6.1830}{11}=\dfrac{10980}{11}.\)

Vậy.....

26 tháng 11 2017

4x = 3y => x/3 = y/4 => x/9 = y/12 ( 1 )

5y = 6z => y/6 = z/5 => y/12 = z/10 ( 2 )

Từ ( 1 ) và ( 2 ) => x/9 = y/12 = z/10

=> 2x/18 = y/12 = z/10 

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

2x/18 = y/12 = z/10 = 2x+y-z/18+12-10 = 40/20 = 2

=> x = 18 ; y = 24 ; z = 20

Vậy ...

31 tháng 7 2016

b) \(2x=3y=6z\) và \(x+y+z=1830\)

Ta có: \(2x=3y=6z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\) và \(x+y+z=1830\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}=\frac{1830}{1}=1830\) 

\(\Rightarrow x=1830.\frac{1}{2}=915\)

\(y=1830.\frac{1}{3}=610\)

\(z=1830.\frac{1}{6}=305\)

31 tháng 7 2016

a)  \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)

Ta có: \(\left(a-2009\right)^2\ge0\)

\(\left(b+2010\right)^2\ge0\)

Để \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-2009=0\Rightarrow a=2009\\b+2010=0\Rightarrow b=-2010\end{cases}}\)

Vậy \(a=2009\)

\(b=-2010\)

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)

3 tháng 10 2017

1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21

Aps dụng tính chất của dãy tỉ số bằng nhau:

x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4

=> x/6 = 7/4 => x= 21/2

y/3 = 7/4 -> y= 21/4

z/3 = 7/4 -> z= 21/4

3 tháng 10 2017

1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)

\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)

\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)

\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)

Vậy x=-1/6 ; y=1/4 và z = 1/3

3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)

\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)

\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)

\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)

Vậy x=7/2 ; y=4 và z=21/2

4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)

\(\frac{x-1}{3}=2\Rightarrow x=7\)

\(\frac{y-2}{4}=2\Rightarrow y=10\)

\(\frac{z-3}{5}=2\Rightarrow z=13\)

Vậy x=7 ; y=10 và z=13

15 tháng 10 2017

làm giúp mk bài này nhá                                                                                                              0+1+2+...+2017  có bao nhiêu số hạng

                                                                                                          

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)