Bài 3:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2015

giả thiết => \(\frac{M\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{N\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{32x-19}{\left(x+1\right)\left(x-2\right)}\)

=> M(x-2) + N(x+1) = 32x - 19

<=> M.x - 2.M + N.x + N = 32.x -19

=> (M+ N).x + (N - 2.M) = 32.x - 19

=> M+ N = 32 và -2M + N = -19 

=> M = 17, N = 15

vậy M.N = 17. 15 =...

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

19 tháng 5 2021

c)  Xét tam giác HBA và tam giác BKA có 

\(\hept{\begin{cases}\widehat{BAK}\text{ chung}\\\widehat{BHA}=\widehat{KBA}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta HBA\approx\Delta BKA\left(g-g\right)\)

mà \(\Delta HBA\approx\Delta ABC\left(\text{ câu a}\right)\)

=> \(\Delta BKA\approx\Delta ABC\Rightarrow\frac{AC}{AB}=\frac{AB}{BK}=\frac{4}{3}\)

=> \(\frac{S_{ABC}}{S_{BKA}}=\left(\frac{AC}{AB}\right)^2=\left(\frac{4}{3}\right)^2=\frac{16}{9}\)

19 tháng 5 2021

d) Xét tam giác EHA và tam giác FHK có 

\(\hept{\begin{cases}\widehat{EHA}=\widehat{FHK}\left(\text{đối đỉnh}\right)\\\widehat{KFH}=\widehat{HEA}\left(AC//BK\right)\end{cases}}\Rightarrow\Delta EHA\approx\Delta FHK\left(g-g\right)\)

=> \(\frac{AE}{KF}=\frac{EH}{FH}\)(1)

Tương tự \(\Delta FHB\approx\Delta EHC\left(g-g\right)\)

=> \(\frac{EH}{FH}=\frac{EC}{FB}\)(2)

Từ (1) (2) => \(\frac{AE}{KF}=\frac{EC}{FB}\Rightarrow AE.BF=EC.KF\)

DD
28 tháng 7 2021

Đặt \(a=x+1,b=x+3\)với \(x=11...1\)(\(n\)chữ số \(1\))

\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+3+1\)

\(=x^2+4x+4=\left(x+2\right)^2\)

Do đó ta có đpcm. 

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

10 tháng 8 2021

( 2x - 6 ) ( x - 5 ) = ( 2x - 6 ) ( 2x - 4 )

<=> ( 2x - 6 ) ( x - 5 ) - ( 2x - 6 ) ( 2x - 4 ) = 0

<=> ( 2x - 6 ) ( x - 5 - 2x + 4 ) = 0

<=> ( 2x - 6 ) ( - x - - ) = 0

<=> \(\orbr{\begin{cases}2x-6=0\\-x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

( 2x - 6) . ( x - 5) = ( 2x - 6) . ( 2x-4 )

x = 3 

x = -1 

chúc bạn học tốt