Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )
a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC
b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.
c) Chứng minh rằng tam giác MDE đều
d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm
Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.
a. Chứng minh tam giác ABI = tam giác AHI
b. HI cắt AB tại K. Chứng tỏ rằng BK=HC
c. Chứng minh rằng BH // KC
d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều
Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)
a. Chứng minh : tam giác AHB= tam giác AHC
b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân
d. Chứng minh BM // AC
Giải
Ta Có : ∠BAM = ∠BKM ( ΔABC vuông tại A ; MK ⊥ BC )
BM chung
∠ABM = ∠KBM ( BM là phân giác ∠ABK )
=> ΔBAM = ΔBKM ( ch-gv )
b) Ta có ΔBAM = ΔBKM ( cmt )
=> MA = MK ( 2 cạnh tương ứng )
=> ΔMAK cân tại A ( dhnb )
=> ∠MAK = ∠MKA ( 2 góc tương ứng )
Ta có : AD // MK
=> ∠ADK = ∠MKA
Mà ∠MAK = ∠MKA
⇒ ∠ADK = ∠MAK
lại có : ∠ADK = MAK = ∠DAC
⇒ AK là phân giác ∠DAC ( đpcm )
c, Có ΔABC vuông tại A
⇒ ∠BAC là góc lớn nhất
⇒ AB < BC ; AC < BC
Chúc bn học tốt ^^