K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)

Xét ΔIBC có

\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)

\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)

14 tháng 2 2016

tách ra đi dài quá ak

14 tháng 2 2016

moi hok lop 6

4 tháng 10 2019

có vẽ hình ko

29 tháng 7 2019

a) Xét tam giác BAD và tam giác BAC, có:

          góc BAD = góc BAC = 90o              (gt)

          BA: cạnh chung

          góc ABD = góc ABC                (Vì AB là p/g của BC)

Nên: Tam giác BAD = tam giác BAC                      ( g - c - g)

=> BD = BC                     (2 cạnh t/ư)

Ta có: AC vuông góc với AB                            (gt)

           AC vuông góc với CF                            (gt)

   => AB // CF                    (Quan hệ từ _|_ -> //)

Nên: góc ABC = góc FCB                         (2 góc so le trong = nhau)

Lại có: CD vuông góc với CF                       (gt)

            BF vuông góc với CF                       (gt)

=> CD // BF                     (Quan hệ từ _|_ -> //)

Hay: AC // BF

Do đó: góc ACB = góc FBC                       (2 góc so le trong = nhau)

Xét tam giác BFC và tam giác CAB, có:

          góc FBC = góc ACB                         (cmt)

          BC: cạnh chung

          góc FCB = góc ABC                         (cmt)

Nên: tam giác BFC = tam giác CAB                              ( g - c - g)

   => góc BAC = góc CFB                        ( 2 góc t/ư)

 Mà: góc BAC = 90o

Do đó: góc CFB = góc BAC = 90o

Xét tam giác BEF và tam giác BCF, có:

          góc EBF = góc CBF                       (Vì BF là p/g của góc CBE)

          BF: cạnh chung

          góc BFE = góc BFC = 90o                       (cmt)

Nên: tam giác BEF = tam giác BCF                      ( g - c - g)

Vậy góc BCF = góc BEF                        ( 2 góc t/ư)

Hay: góc BCE = góc BEC                        (đpcm)

b) Trong tam giác ABC, có:

            góc A + góc B + góc C = 180o                   (T/c tổng 3 góc trong 1 tam giác)

Vậy ........

c)Ta có: góc BFC = 90o                   (cm câu a)

Vậy BF vuông góc với CE                         (đpcm)

Mk ko chắc chắn ở câu b nhé!                          

Giải

Ta có: tam giác ABC: A + B + C = 180 ( định lý )

                         60 + B + 50  = 180

                        B + 110         = 180

                        B                  = 180 - 110

                        B                  = 70

Ta có: B = B1 + B2 ( theo hình mk vẽ và đặt tên)

=> B = 70 => B1 = B2 = 35

Ta có: B1 + A = ADB ( t chất góc ngoài )

35 + 60 = ADB

=> ADB = 95

Mặt khác B2 + C  = BDC ( T chất góc ngoài )

35 + 50 = BDC

=> BDC = 85

Vậy .......

 Thêm dấu góc nha, mk

2 tháng 10 2019

tam giác abc có góc a+b+c=180 đọ (tổng các góc trong của tam giác )

\(\Rightarrow b=180-60-50=70\)

\(b1=b2=\frac{70}{2}=35\)

\(b1+A+ADB=180\)(Tổng các góc trong 1 tam giác)

\(\Rightarrow ADB=180-60-35=85\)

CDB+ADB=180(2 góc kề bù)

\(\Rightarrow CDB=180-85=95\)

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

7 tháng 7 2015

B2 : Hình dễ bạn tử kẻ hình nhá !

a)Ta có AH là đường cao

=> Góc AHB = AHC = 90o

 Xết tam giác AHB có :

BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )

=> BAH + 90+ 70=180o

=> BAH = 180o-70o-90o

=> BAH = 20o

Xét tam giác AHC cps  :

AHC + HAC + HCA = 180o

=> 90 + HAC + 30 = 180

=> HAC = 180-30-90=60o

b) Ta có AD  là đường phân giác 

=> ABD= CAD = 80/2 = 40o

Xét tam giác ADB có :

ABD + BDA +DAB = 180

=> 70 + BDA + 40 = 180

=> BDA = 180-40-70 = 70

Xét tam giác ADC có : 

ACD + CDA + DAC = 180

=> 30 + CDA + 40 = 180

=> CDA = 180-40-30

=> CDA=110

( **** )

7 tháng 7 2015

từng bài một thôi như này thì ngứa mắt lắm anh em ơi