Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Huy Hoang tự vẽ hình nhé!
\(a,\) Xét \(\Delta MAC\) và \(\Delta MDC\) ta có:
+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)
+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
+) \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\) Và \(CD=AB< AC\)
Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)
Vì \(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)
\(\Rightarrow MAB>MAC\)
b, AH vuông với BC tại H
=> H là hình chiếu của A trên BC
HB là đường chiếu tương ứng của đường xiên AB
HC là đường chiếu tương ứng của đường xiên AC
Mà \(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)
Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB
HC là hình chiếu của đường xiên EC
Mà \(HB< HC\left(theodpcm3\right)\)
\(\Rightarrow EC< EB\left(dpcm4\right)\)
\(\)
a: Xét ΔBID và ΔBIC có
BI chung
\(\widehat{DBI}=\widehat{CBI}\)
BD=BC
Do đó: ΔBID=ΔBIC
b:
Ta có: ΔBDC cân tại B
mà BI là đường phân giác
nên BI là đường cao và I là trung điểm của DC
Xét ΔEDC có
EI là đường cao
EI là đường trung tuyến
Do đo: ΔEDC cân tại E
=>ED=EC
c: BI\(\perp\)CD
AH\(\perp\)CD
Do đó: BI//AH
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
Hình vẽ:
A C B E K D
a/ Xét 2Δ vuông:ΔACE và ΔAKE có:
AE: chung
\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)
=> ΔACE = ΔAKE (ch-gn)
=> AC = AK (đpcm)
b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)
mà \(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)
=> \(\widehat{KAE}=\widehat{B}=30^o\)
=> \(\Delta EAB\) cân tại E
mà EK _l_ AB (gt)
=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)
=> KA = KB (đpcm)
c/ Xét \(\Delta EAB\) có:
EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)
AC _l_ BE ké dài (gt)
=> EK, BD, AC đồng quy tại 1 điểm (đpcm)
đáp án ở đây bạn nha trừ câu c):
https://hoc24.vn/hoi-dap/question/59956.html
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
a: Xét ΔBID và ΔBIC có
BD=BC
góc CBI=góc DBI
BI chung
Do đó: ΔBID=ΔBIC
b: Xét ΔBEC và ΔBED có
BE chung
góc EBC=góc EBD
BC=BD
Do đó: ΔBEC=ΔBED
=>ED=EC
c: ΔBCD cân tại B
mà BI là đường phân giác
nên BI vuông góc với CD
=>BI//AH