K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2

a: Ta có: AB<AC

nên HB<HC

hay \(\left\{{}\begin{matrix}HB< 12.5\left(cm\right)\\HC>12.5\left(cm\right)\end{matrix}\right.\)

Ta có: HB+HC=BC

nên HB=25-HC

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC\left(25-HC\right)=12^2=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow HC=16\left(cm\right)\)

\(\Leftrightarrow HB=9\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

4 tháng 9 2021

Cảm ơn bạn

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.a)     Tìm độ dài của BH; CH; AB và AC.b) Vẽ trung tuyến AM. Tính AMc)     Tìm diện tích của rAHM.Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.Bài 4: BP 2017-2018Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH =...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.

a)     Tìm độ dài của BH; CH; AB và AC.

b) Vẽ trung tuyến AM. Tính AM

c)     Tìm diện tích của rAHM.

Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.

Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.

Bài 4: BP 2017-2018

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.

a)       Tính độ dài đường cao AH và ABC của tam giác ABC.

b)       Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác

Bài 5.   Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC

Bài 6. (1.0 điểm)

      Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.

 

 

1
24 tháng 7 2021

câu c bài 1 là tích diện tích của tam giác AHM nhá'

11 tháng 10 2017

a) 
xét tam giác ABC vuông tại A: 
=> tan C= AH/HC=12/15=0.8 (tỉ số lượng giác) 
=>C=40 độ 
ta có: góc B= 90 độ - góc C (vì C+B=90 vì A=90 ) 
góc B=90 độ - 40 độ 
góc B=50 độ. 
xét tam giác ABC vuông tại A có: 
Cos B = AH/BH (tỉ số lượng giác) 
=> BH=AH/ cos B = 12/cos 50 độ=18.67 cm 
b) xét tam giác ABC vuông tại A có: 
AB^2 = BH*BC (hệ thức lượng) 
AB^2=18.67*25 
AB^2=466.7 
=>AB=21.6 
ta lại có: 
AH*BC=AB*AC (hệ thức lượng) 
12 * 25= 21.6*AC 
=>AC=(12*25)/21.6=13.89 cm 

12 tháng 10 2017

a) Đặt BH=x => CH=BC-BH=25-x

Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A, AH vuông góc với BC, ta có:

    +) AH2= BH . CH

  hay 122= x(25-x)

    <=> 144=25x-x2

    <=> x2-25x+144=0

   <=>(x2-9x)-(16x-144)=0

   <=>x(x-9)- 16(x-9)=0

   <=>(x-9)(x-16)=0

   <=> x-9=0           x=9

                      <=>

          x-16=0         x=16

vì AB<AC nên BH<CH. Mà BC =25=> x=BH=9 cm=> CH= 25-9=16cm

+) AB2=BH. BC=9. 25=225=> AB=15cm

+)AC2=CH. BC= 16.25=400=> AC=20cm

b)Ta có: snB= AC/BC= 0,8=> góc B=53 độ

Xét tam giác ABC có đường trung tuyến AM=> AM=1/2 BC= BM=> tam giác ABM cân tại M => góc B = góc BAM=53 độ

=> AMH hay AMB= 180 độ- ( 53 độ+53 độ)=74 độ

c) Áp dụng định lí Py-ta -go vào tam giác ABH ta có :

BH2= AB2- AH2

hay BH2= 152-122=81=> BH= 9cm

Ta có : BM=1/2 BC=1/2.25=12,5 cm=> HM= BM-BH=12,5-9=3,5cm

=> S tam giác AHM= AH.HM:2=12.3,5:2=21cm2

Có nhiều cách giải, bạn làm theo cách này cx đc

                                           

27 tháng 10 2021

a: AB=15(cm)

AC=20(cm)

BH=9(cm)
CH=16(cm)

a: Đặt BH=x; CH=y

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>x*y=144

mà x+y=25

nên x,y là các nghiệm của phương trình:

a^2-25a+144=0

=>a=9 hoặc a=16

=>BH=9cm; CH=16cm

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

b: ΔABC vuông tại A có AM là trung tuyến

nên AM=BC/2=12,5cm

Xét ΔAHM vuông tại H có sin AMH=AH/AM=24/25

nên \(\widehat{AMH}\simeq74^0\)

c: HM=căn AM^2-AH^2=3,5cm

S AHM=1/2*HM*AH=1/2*12*3,5=21cm2

12 tháng 10 2018

hình tự vẽ nhé

a)  \(AB< AC\) =>  \(BH< CH\)

Áp dụng hệ thức lượng vào tam giác vuông ABC ta được:

\(AH^2=BH.CH\)

=>  \(BH.CH=4\)

mà   \(BH+CH=5\),   

  giải ra ta được:  \(BH=1cm;\)\(CH=4cm\)

Áp dụng hệ thức lượng vào tam giác vuông ABC đc:

AB2 = BH . BC

=> AB2 = 1 . 5 = 5

=>  \(AB=\sqrt{5}cm\)

Tương tự đc:  \(AC=2\sqrt{5}cm\)

12 tháng 10 2018

b)  Tam giác ABC có AM là trung tuyến

=>  AM = BM = MC = BC/2 = 2,5 cm

\(\sin AMH=\frac{AH}{AM}=\frac{2}{2,5}=0,8\)

=>  \(\widehat{AMH}\approx53^08'\)

c)  \(HM=BM-BH=2,5-1=1,5cm\)

\(S_{\Delta AHM}=\frac{AH.HM}{2}=\frac{2.1,5}{2}=1,5cm^2\)