Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Vì \(a,b,c>0\)\(\Rightarrow\frac{a}{b};\frac{b}{c};\frac{c}{a}>0\)nên áp dụng bđt Cauchy cho 3 số dương ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3.\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3.\sqrt[3]{1}=3\left(đpcm\right)\)
Vậy với \(a,b,c>0\)thì \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\)
ap dung bdt cauchy -schwaz dang engel ta co
\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)\(\)
ma \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow VT\ge\frac{1}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)
dau =xay ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
áp dụng bất đẳng thức cô-si ta có:
\(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2};a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\sqrt[3]{a^2b^2c^2.abc}=9abc\)
\(\frac{a^2+b^2+c^2}{3abc}\ge\frac{3}{a+b+c}\Rightarrow\frac{\left(a^2+b^2+c^2\right)^2}{3abc}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
áp dụng bất đẳng thức schwarts ta có:
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
dấu "=" xảy ra khi a=b=c
abc = 1 \(\Rightarrow\frac{1}{abc}=1\Rightarrow xyz=1\)
Đặt \(a=\frac{1}{x}\); \(b=\frac{1}{y}\); \(c=\frac{1}{z}\)(x, y, z > 0)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^3}=x^3\\\frac{1}{b+c}=\frac{1}{\frac{1}{y}+\frac{1}{z}}=\frac{1}{\frac{y+z}{yz}}=\frac{yz}{y+z}\end{cases}\Leftrightarrow\frac{1}{a^3\left(b+c\right)}=\frac{x^3yz}{y+z}=\frac{x^2}{y+z}}\)
Tương tự, ta có :
\(\frac{1}{b^3\left(a+c\right)}=\frac{y^2}{z+x}\)
\(\frac{1}{c^3\left(a+b\right)}=\frac{z^2}{x+y}\)
Ta cần cm : \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Áp dụng bđt Cau chy cho x, y, z > 0
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Ta cần cm : \(\frac{x+y+z}{2}\ge\frac{3}{2}\)
\(\Leftrightarrow x+y+z\ge3\)
Áp dụng bđt Cauchy cho x, y, z> 0
\(x+y+z\ge3\sqrt[3]{xyz}=3\)
trong tập chuyên đề về Svac-xơ cũng có câu này , còn về cách chứng minh thì easy lắm
Do \(abc=1\)Nên có thể viết lại bđt cần chứng minh trở thành :
\(\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(a+c\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
\(< =>\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Svac-xơ ta có :
\(\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{ab+ac+ba+bc+ca+cb}\)
\(=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(ab+bc+ca\ge3\), thật vậy :
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}=3\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
ta có :