Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{d}{1}=\dfrac{a+b+c+d}{2+3+4+1}=\dfrac{360}{10}=36^0\)
Do đó: \(\left\{{}\begin{matrix}a=72^0\\b=108^0\\c=144^0\\d=36^0\end{matrix}\right.\)
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 1:
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
Q là trung điểm của AD(gt)
P là trung điểm của CD(gt)
Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ(cmt)
MN=PQ(cmt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABD có
M là trung điểm của AB(gt)
Q là trung điểm của AD(gt)
Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)
Hình bình hành MNPQ trở thành hình vuông khi
a, Ta có \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=2:2:1:1\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
Áp dụng t/c dtsbn:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+1+2+2}=\dfrac{360^0}{6}=60^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=120^0\\\widehat{C}=60^0\\\widehat{D}=60^0\end{matrix}\right.\)
b, Vì \(\widehat{A}+\widehat{C}=120^0+60^0=180^0\) mà 2 góc này ở vị trí TCP nên AB//CD
Do đó ABCD là hình thang
Vì \(\widehat{A}=\widehat{B}=120^0\) nên ABCD là hình thang cân