Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
hay ΔBED cân tại B
Trả lời:
Bài 1:
a, \(9x^2-4=\left(3x\right)^2-2^2=\left(3x-2\right)\left(3x+2\right)\)
b, \(x^3+27=x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)
c, \(8-y^3=2^3-y^3=\left(2-y\right)\left(4+2y+y^2\right)\)
d, \(x^4-81=\left(x^2\right)^2-9^2=\left(x^2-9\right)\left(x^2+9\right)\)\(=\left(x^2-3^2\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
e, \(64x^3-1=\left(4x\right)^3-1^3=\left(4x-1\right)\left(16x^2+4x+1\right)\)
f, \(x^6+8y^3=\left(x^2\right)^3+\left(2y\right)^3=\left(x^2+2y\right)\left(x^4-2x^2y+4y^2\right)\)
Câu 4:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Để A=-3 thì x-1=-6
hay x=-5(loại)
Bài 2:
5) \(3\left(2^2+1\right)\left(2^4+1\right)+1\)
\(=3\left(4+1\right)\left(16+1\right)+1\)
\(=3\cdot5\cdot7+1\)
\(=255+1\)
\(=256\)
6) \(45^2+80\cdot45+40^2-15^2\)
\(=45^2+3600+40^2-15^2\)
\(=\left(45-15\right)\left(45+15\right)+3600+1600\)
\(=30\cdot60+3600+1600\)
\(=1800+3600+1600\)
\(=7000\)
Bài 3:
c) \(5\left(3-2x\right)^2-3\left(3x+1\right)\left(3x-1\right)+7x^2-48\)
\(=5\left(9-12x+4x^2\right)-3\left(9x^2-1\right)+7x^2-48\)
\(=45-60x+20x^2-27x^2+3+7x^2-48\)
\(=-60x\)
d) \(\left(x^2+4\right)\left(x+2\right)\left(x-2\right)-\left(x^2-3\right)^2\)
\(=\left(x^2+4\right)\left(x^2-4\right)-\left(3x^2\right)^2\)
\(=x^4-16-9x^4\)
\(=-8x^4-16\)
Bài 1 ,
\(a,9x^2-6x+1=\left(3x-1\right)^2\)
\(b,x^2+y^2-2x+4y+5=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\) \(c,2x^2+y^2+4x-2y+3=2\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=2\left(x+1\right)^2+\left(y-1\right)^2\) \(d,2x^2+y^2-6x+2xy+9=\left(x^2-6x+9\right)+\left(x^2+2xy+y^2\right)=\left(x-3\right)^2+\left(x+y\right)^2\)
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
Ta có: \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-2x+1\ge0\)\(\Leftrightarrow x^2+1\ge2x\).\(\left(1\right)\)
\(\left(y-2\right)^2\ge0\Leftrightarrow y^2-4y+4\ge0\Leftrightarrow x^2+4\ge4y\).\(\left(2\right)\)
\(\left(z^2-9\right)\ge0\Leftrightarrow z^2-6z+9\ge0\Leftrightarrow z^2+9\ge6z\).\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\) nhân vế theo vế ta được:
\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)\ge48xyz\)
mà theo đề ta có:\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)=48xyz\)
nên \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Thay \(x=1;y=2;z=3\)vào biểu thức A ta được:
\(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\dfrac{1+8+27}{\left(1+2+3\right)^2}=1\)
Vậy giá trị của biểu thức \(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)là 1.
52 + 122 =132 => tg vuong
Sabc = 12.5/2 = 30cm2
( toán violympic cho rất thông minh, mới nhìn là mk phát hiện ra r , thui mk đi học đây)
Tam giác ABC có 3 cạnh của tam giác ứng với định lí Py-ta-go=> ABC là tam giác vuông
\(S_{ABC}=\frac{5.12}{2}=30cm^2\)
Bài 3:
Xét ΔBAC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)
Hình thang EDCB có
M là trung điểm của EB
N là trung điểm của DC
Do đó: MN là đường trung bình của hình thang EDCB
Suy ra: MN//ED//BC và \(MN=\dfrac{ED+BC}{2}\)
\(\Leftrightarrow MN=\left(\dfrac{1}{2}BC+BC\right):2=\dfrac{3}{4}BC\)
Xét ΔEBD có
M là trung điểm của EB
MI//ED
Do đó: I là trung điểm của BD
Xét ΔBED có
M là trung điểm của EB
I là trung điểm của BD
Do đó: MI là đường trung bình của ΔBED
Suy ra: \(MI=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(1\right)\)
Xét ΔECD có
N là trung điểm của DC
NK//ED
Do đó: K là trung điểm của EC
Xét ΔECD có
N là trung điểm của DC
K là trung điểm của EC
Do đó: NK là đường trung bình của ΔECD
Suy ra: \(NK=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(2\right)\)
Ta có: MI+IK+KN=MN
nên \(IK=\dfrac{1}{4}BC\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra MI=IK=KN