Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)Gọi 3 số đó là a;a+1;a+2
Ta có:
a+a+1+a+2=(a+a+a)+(1+2)
=3a+3=3(a+1) chia hết 3
Vậy ta có tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Gọi 4 số đó là a;a+1;a+2;a+3
Ta có:
a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)
=4a+6
Ta thấy: 4a chia hết 4, mà 6 không chia hết 4
Vậy ta có tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
15-2n:n+1
2(n+1):n+1
15-2n-2(n+1):n+1
15-2n-2n-2:n+1
15-2:n+1
13:n+1
→n+1={1;13}
→n={9;12}
\(A=\left(x+3\right)^2+2\left|y-1\right|+3\ge3\forall x,y\)
Dấu '=' xảy ra khi x=-3 và y=1
\(A=\left(x+3\right)^2+2\left|y-1\right|+3\ge3\forall x,y\)
Dấu '=' xảy ra khi x=-3 và y=1
Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên
a, có vì số lẻ - số lẻ = số chẵn
b, có vì lẻ + lẻ - chẵn = chẵn
c, không vì 24a là số chẵn 10b cũng là số chẵn