\(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}\)

Ta thấy \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< B\)mà \(B< 1\)nên 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\)

13 tháng 3 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow...............< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow...................< 1-\frac{1}{100}\)

\(\Rightarrow..............< \frac{99}{100}\)

Mà \(\frac{99}{100}< 1\)

\(\Rightarrow....................< 1\)

Vậy..................

13 tháng 3 2018

vì nó bé hơn 1 nên người ta mơi bắt mình chứng minh

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

\(A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A>\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{100.101}\)

\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}=\frac{100}{505}>\frac{100}{600}=\frac{1}{6}\)

Tương tự 

\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.....+\frac{1}{100^2}< \frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\right)\)

\(\Leftrightarrow\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3}............\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{49.50}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow1-\frac{1}{50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\Rightarrow1+\frac{1}{2^2}+....+\frac{1}{50^2}< 1+1=2\)

\(\Leftrightarrow\frac{1}{2^2}.\left(1+\frac{1}{2^2}+....+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)

\(\LeftrightarrowĐPCM\)