K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.b/Chứng minh CA= CD và BD=BAC/cho góc ACB= 45o . Tính góc ADCD/ Đường cao AH có phải thêm điều kiện gì thì AB//CDBài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông...
Đọc tiếp

Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.

a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.

b/Chứng minh CA= CD và BD=BA

C/cho góc ACB= 45o . Tính góc ADC

D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD

Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD

a/ chứng minh ΔAHD=ΔDBH

b/ Hai đường thẳng AB và DH có song song không? vì sao?

c/Tính góc ACB biết góc BAH=35o

Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM

a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC

b/ chứng minh AM=AN

c/ chứng minh AI vuông góc với BC

Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD

a/Chứng Minh: ΔAOM=ΔBOM

b/chứng minh:AM=MB

c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD

Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD

a/ chứng minh : AD=BC

b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD

c/chứng minh: OE là phân giác của xOy

Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng

a)ΔADB=ΔADC

b) AD vuông góc với BC

5
11 tháng 12 2016

Sao đăng nhiều tek bạn. Đăng từng bài thoy!

1/ Ta có hình vẽ:

A B C H D

a/ Xét tam giác ABH và tam giác DBH có:

BH: chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\) => BC là phân giác góc ABD

Xét tam giác ACH và tam giác DCH có:

CH: cạnh chung

\(\widehat{AHC}\)=\(\widehat{DHC}\)=900

AH = HD (GT)

Vậy tam giác ACH = tam giác DCH (c.g.c)

=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=> CB là phân giác góc ACD

b/ Ta có: tam giác ABH = tam giác DBH (đã chứng minh trên)

=> BA = BD (2 cạnh tương ứng)

Ta có: tam giác ACH = tam giác DCH (đã chứng minh trên)

=> CA = CD (2 cạnh tương ứng)

c/ Ta có: tam giác ACH = tam giác DCH

=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=450

Trong tam giác CHD có:

\(\widehat{C}\)+\(\widehat{H}\)+\(\widehat{D}\)=1800

450 + 900 + góc D = 1800

=> góc ADC = 450

d/ Đường cao AH phải có thêm điều kiện BH = HC => chứng minh tam giác ABH = CDH để AB//CD

2/ Ta có hình vẽ:

A B C H D

a/ Xét tam giác ABH và tam giác DBH có:

BH: chung

\(\widehat{B}=\widehat{H}=90^0\)

AH = BD (GT)

=> tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{BHD}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // HD (đpcm)

3/ Ta có hình vẽ:

A I M N B C

a/ Xét tam giác ABI và tam giác ACI có:

AB = AC (GT)

BI = CI (GT)

AI: chung

=> tam giác ABI = tam giác ACI (c.c.c)

=> \(\widehat{BAI}\)=\(\widehat{CAI}\) => AI là phân giác \(\widehat{BAC}\)

b/ Xét tam giác AMB và tam giác ANC có:

MB = NC (GT)

\(\widehat{ABC}=\widehat{ACB}\)

Mà góc ABC + ABM = 1800

và góc ACB + ACN = 1800

=> \(\widehat{ABM}\)=\(\widehat{ACN}\)

AB = AC (GT)

=> tam giác AMB = tam giác ANC (c.g.c)

=> AM = AN (2 cạnh tương ứng)

c/ Ta có: tam giác ABI = tam giác ACI

=> \(\widehat{AIB}\)=\(\widehat{AIC}\) (2 góc tương ứng)

\(\widehat{AIB}\)+\(\widehat{AIC}\)=1800

=> \(\widehat{AIB}\)=\(\widehat{AIC}\)=\(\frac{1}{2}\)1800 = 900

Vậy AI vuông góc BC (đpcm)

12 tháng 12 2016

Làm tiếp mấy câu sau:

4/ Ta có hình vẽ:

O x y t A B M C D H

a/ Xét tam giác OAM và tam giác OBM có:

OA = OB (GT)

\(\widehat{AOM}=\widehat{BOM}\) (GT)

OM: cạnh chung

=> tam giác OAM = tam giác OBM (c.g.c)

b/ Ta có: tam giác OAM = tam giác OBM (câu a)

=> AM = BM (2 cạnh tương ứng)

c/ Gọi giao điểm của AB và OM là N

Xét tam giác OAN và tam giác OBN có:

OA = OB (GT)

\(\widehat{AON}=\widehat{BON}\) (GT)

ON: chung

=> tam giác OAN = tam giác OBN (c.g.c)

=> \(\widehat{ONA}=\widehat{ONB}\) (2 góc tương ứng)

\(\widehat{ONA}+\widehat{ONB}=180^0\)

=> \(\widehat{ONA}=\widehat{ONB}=\frac{1}{2}180^0=90^0\)

=> OM vuông góc AB hay OH vuông góc AB

Ta có: AB // CD, mà AB \(\perp\)OH = >CD \(\perp\)OH (đpcm)

5/ Ta có hình vẽ:

x O y A B C D E

a/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

\(\widehat{AOB}\): góc chung

OA+AC=OB+BD => OC = OD

Vậy tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b/ Ta có: AC = BD (GT) (1)

Ta có: \(\widehat{OAD}\)+\(\widehat{DAC}\)=1800 (kề bù)

Ta có: \(\widehat{OBC}\)+\(\widehat{CBD}\)=1800 (kề bù)

\(\widehat{OAD}\)=\(\widehat{OBC}\) => \(\widehat{DAC}\)=\(\widehat{CBD}\) (2)

Ta có: góc C = góc D (tam giác OAD = tam giác OBC) (3)

Từ (1),(2),(3) => tam giác EAC = tam giác EBD

c/ Xét tam giác OAE và tam giác OBE có:

OA = OB (GT)

OE: cạnh chung

AE = BE (do tam giác EAC = tam giác EBD)

=> tam giác OAE = tam giác OBE (c.c.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác góc xOy

6/ Ta có hình vẽ:

A B C D

a/ Xét tam giác ADB và tam giác ADC có:

AB = AC (GT)

AD: cạnh chung

BD = DC (GT)

=> tam giác ADB = tam giác ADC (c.c.c)

b/ Ta có: tam giác ADB = tam giác ADC (câu a)

=> \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng)

\(\widehat{ADB}\)+\(\widehat{ADC}\)=1800

=> \(\widehat{ADB}=\widehat{ADC}\)=900

Vậy AD \(\perp\) BC (đpcm)

1 tháng 1 2022

Xét ΔOBCΔOBC và ΔOADΔOAD có:

OB=OAOB=OA (gt)

ˆOO^ chung

OC=OAOC=OA (gt)

⇒ΔOBC=ΔOAD⇒ΔOBC=ΔOAD (c.g.c)

⇒BC=AD⇒BC=AD (hai cạnh tương ứng)

 

b) Xét ΔEBDΔEBD có:

ˆE1+ˆB1+ˆD1=180o⇒ˆB1=180o−ˆE1−ˆD1E1^+B1^+D1^=180o⇒B1^=180o−E1^−D1^ (1)

Xét ΔEACΔEAC có:

ˆE2+ˆA1+ˆC1=180o⇒ˆA1=180o−ˆE2−ˆC1E2^+A1^+C1^=180o⇒A1^=180o−E2^−C1^ (2)

mà ˆE1=ˆE2E1^=E2^ (đối đỉnh) (3)

ˆD1=ˆC1D1^=C1^ (do ΔOBC=ΔOADΔOBC=ΔOAD hai góc tương ứng) ($)

Từ 4 điều trên suy ra ˆB1=ˆA1B1^=A1^

Ta có: BD=OD−OB=OC−OA=ACBD=OD−OB=OC−OA=AC

Xét ΔEACΔEAC và ΔEBDΔEBD có:

ˆD1=ˆC1D1^=C1^

BD=ACBD=AC (cmt)

ˆB1=ˆA1B1^=A1^

⇒ΔEAC=ΔEBD⇒ΔEAC=ΔEBD (g.c.g)

 

c) ΔEAC=ΔEBD⇒EC=EDΔEAC=ΔEBD⇒EC=ED (hai cạnh tương ứng)

⇒⇒

Xét ΔOEDΔOED và ΔOECΔOEC có:

OD=OCOD=OC (gt)

ˆD1=ˆC1D1^=C1^

DE=CE (cmt)

⇒ΔOED=ΔOEC⇒ΔOED=ΔOEC (c.g.c)

⇒ˆDOE=ˆCOE⇒DOE^=COE^ (hai góc tương ứng)

⇒OE⇒OE là tiếp tuyến của ˆOO^

image 
1 tháng 1 2022

oki nha

1 tháng 12 2016

làm hộ cái

15 tháng 12 2016

a/   OA=OB,AC=BD suy ra OA + AC= OB+BD hay OC=OD

Xét tg COB  và   DOA có OC= OD; góc COB chung ;OB=OA suy ra 2 tg này = nhau (c.g.c)

=> AD=BC (đpcm)

b/ vì tgCOB=tg DOA nên góc OCB=gócADO;góc CBO=góc OAD

Có gócOCB=góc OAD=>180- gócOCB=1800 - góc OAD hay gócEBD=góc EAC

Xét tg ACE và tg BDEcó AC =BD, góc EAC =góc EBD, góc ACE =góc EBD => 2 tg này =nhau (g.c.g) (đpcm)

c/vì tgEAC= tg EBDnên ec= ed

xét tg coe và tg doe có oe chung,oc=od,ec=ed => 2 tg này = nhau (c.c.c)

=> góc coe = góc eod mà góc coe +góc eod = góc cod => góc coe= góc eod = 1/2 góc cod => oe là phân giác góc cod hay là góc xoy(đpcm)

xét tam giác cod cân tại o(vì oc=od)  có oe là phân giác suy ra oe cũng là đường cao tam giác này theo tính chất tam giác cân =>oe vuông góc với cd

Lưu ý tg là tam giác nhé, phần cuối bạn không viết hoa đc nên thông cảm nhé

11 tháng 11 2016

A B C H O x y t 1 2

a)

xét \(\Delta AHO\)\(\Delta BHO\) có:

OH(chung)

\(\widehat{AHO}=\widehat{BHO}=90^o\)

\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)

\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)

=> OA=OB

b)

xét \(\Delta ACO\)\(\Delta BCO\) có:

OA=OB(theo câu a)

\(\widehat{O_1}=\widehat{O_2}\)(gt)

OC(chung)

=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)

=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)

29 tháng 11 2018

Thật là giỏi quá bn nhoc quay pha 🙀🙀🙀🙀

16 tháng 7 2017

a) ∆AOH và  ∆BOH có:=(gt)

OH là cạnh chung

 ∆AOH =∆BOH( g.c.g)

Vậy OA=OB.

b)  ∆AOC và ∆BOC có:

OA=OB(cmt)

=(gt)

OC cạnh chung.

Nên  ∆AOC= ∆BOC(g.c.g)

Suy ra: CA=CB(cạnh tương ứng)

( góc tương ứng).

9 tháng 1 2022
9 tháng 1 2022