Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
BÀI 1:
\(A=\left(x-10\right)^2+103\)
Có: \(\left(x-10\right)^2\ge0\forall x\)
=> \(A\ge103\)
DẤU "=" XẢY RA <=> \(\left(x-10\right)^2=0\Rightarrow x=10\)
\(B=\left(2x+1\right)^2-6\)
Có: \(\left(2x+1\right)^2\ge0\forall x\)
=> \(B\ge-6\)
DẤU "=" XẢY RA <=> \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
BÀI 3:
a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)
\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)
\(A=2\)
b) \(B=\left(2x\right)^3+3^3-8x^3+2\)
\(B=29\)
Bài 1.
A = x2 - 20x + 103
A = ( x2 - 20x + 100 ) + 3
A = ( x - 10 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x - 10 = 0 => x = 10
=> MinA = 3 <=> x = 10
B = 4x2 + 4x - 5
B = ( 4x2 + 4x + 1 ) - 6
B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = -6 <=> x = -1/2
Bài 2.
A = -x2 + 8x - 21
A = -x2 + 8x - 16 - 5
A = -( x2 - 8x + 16 ) - 5
A = -( x - 4 )2 - 5 ≤ -5 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MaxA = -5 <=> x = 4
B = lỗi đề :>
Bài 3.
a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )
= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )
= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2
= 2 ( đpcm )
b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )
= ( 2x )3 + 27 - 8x3 + 2
= 8x3 + 27 - 8x3 + 2
= 29 ( đpcm )
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
\(=x^2+10x+25-x^2+10x-25-20x+2\)
\(=2\) không phụ thuộc vào \(x\)
b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)
\(=x^2-2x-15-x^2+2x-1\)
\(=-16\) không phụ thuộc vào \(x\)
c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)
\(=3x^2-4x-4-3x^2+5x+8\)
\(=x+8\) câu này đề sai.
d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)
\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)
\(=12x^2+34x+10-12x^2-24x-10x+10\)
\(=20\) không phụ thuộc vào \(x\)
a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2
= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2 ( đpcm )
b) ( x + 3 )( x - 5 ) - ( x - 1 )2
= x2 - 2x - 15 - ( x2 - 2x + 1 )
= x2 - 2x - 15 - x2 + 2x - 1
= -16 ( đpcm )
c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8
= 3x2 - 4x - 4 - 3x2 + 5x + 8
= x + 4 ( lỗi đề )
d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )
= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10
= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10
= 20 ( đpcm )
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
easy !
Áp dụng bđt cauchy schwarz dạng engel :
\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)
dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !
Bài 1 :
a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)
\(=x-2x^2+2x^2-x+d=d\)
Đặt \(f\left(x\right)=0\)hay \(d=0\)
Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)
b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)
Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm
1 )
<=> 4(x2+2x+1) + (4x2 -4x +1) - 8(x2 -1) =11
<=>4x2 + 8x + 4 + 4x2 -4x +1 -8x2 +8 = 11
<=> 4x + 13 =11 <=> 4x = -2
=> x =\(\frac{-1}{2}\)
đề dài v~
1.
a) \(f\left(x\right)=5x^2-2x+1\)
\(5f\left(x\right)=25x^2-10x+5\)
\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)
\(5f\left(x\right)=\left(5x-1\right)^2+4\)
Mà \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow5f\left(x\right)\ge4\)
\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)
Dấu " = " xảy ra khi :
\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy ....
b) \(P\left(x\right)=3x^2+x+7\)
\(3P\left(x\right)=9x^2+3x+21\)
\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)
\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)
Mà \(\left(3x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)
\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)
Dấu "=" xảy ra khi :
\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy ...
c) \(Q\left(x\right)=5x^2-3x-3\)
\(5Q\left(x\right)=25x^2-15x-15\)
\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)
\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(5x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)
\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)
Dấu "=" xảy ra khi :
\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)
Vậy ...
2.
a) \(f\left(x\right)=-3x^2+x-2\)
\(-3f\left(x\right)=9x^2-3x+6\)
\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)
\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)
Mà \(\left(3x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)
\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)
Dấu "=" xảy ra khi :
\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
b) \(P\left(x\right)=-x^2-7x+1\)
\(-P\left(x\right)=x^2+7x-1\)
\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)
\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x+\frac{7}{2}\right)^2\ge0\)
\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)
\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)
Vậy ...
c) \(Q\left(x\right)=-2x^2+x-8\)
\(-2Q\left(x\right)=4x^2-2x+16\)
\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)
\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)
Mà : \(\left(2x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)
\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)
Dấu "=" xảy ra khi :
\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy ...
B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)
\(=5\left(x^2+1\right)\)
vì\(x^2+1\ge1\forall x\)
\(\Leftrightarrow B\ge5\forall x\)
dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)
vậy B đạt GTNN =5 khi x=0
Bài 2:
a) Ta có: \(A=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
hay \(x=\dfrac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)