Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
1.a)
\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)
\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)
Suy ra VT > 7
1.b)
\(\sqrt{16}+\sqrt{25}=4+5=9\)
2.a)
\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)
b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)
Các câu còn lại bạn làm tương tự nhé!
c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)
\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)
d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
\(\text{a) Ta có }:\left(\sqrt{7}-\sqrt{2}\right)^2=7-\sqrt{14}+2=9-\sqrt{14}\\ 1^2=1=9-8=9-\sqrt{64}\\ Do\text{ }\sqrt{14}< \sqrt{64}\Rightarrow9-\sqrt{14}>9-\sqrt{64}\\ \Rightarrow\left(\sqrt{7}-\sqrt{2}\right)^2>1^2\\ \Rightarrow\sqrt{7}-\sqrt{2}>1\)
\(\text{b) Ta có: }\left(\sqrt{8}+\sqrt{5}\right)^2=8+\sqrt{160}+5=13+\sqrt{160}\\ \left(\sqrt{7}+\sqrt{6}\right)^2=7+\sqrt{168}+6=13+\sqrt{168}\\ \text{Do }\sqrt{160}< \sqrt{168}\Rightarrow13+\sqrt{160}< 13+\sqrt{168}\\ \Rightarrow\left(\sqrt{8}+\sqrt{5}\right)^2< \left(\sqrt{7}+\sqrt{6}\right)^2\\ \Rightarrow\sqrt{8}+\sqrt{5}< \sqrt{7}+\sqrt{6}\)
\(\text{c) Ta có }:\left(\sqrt{2005}+\sqrt{2007}\right)^2\\ =2005+2\sqrt{2005\cdot2007}+2007\\ =4012+2\sqrt{2005\cdot2007}\\ \left(2\sqrt{2006}\right)^2=4\cdot2006=4012+2\cdot2006\)
\(\text{Lại có }:\sqrt{2005\cdot2007}=\sqrt{\left(2006-1\right)\left(2006+1\right)}=\sqrt{2006^2-1}\\ Do\text{ }\sqrt{2006^2-1}< \sqrt{2006^2}\\ \Rightarrow\sqrt{2005\cdot2007}< 2006\\ \Rightarrow2\sqrt{2005\cdot2007}< 2\cdot2006\\ \Rightarrow4012+2\sqrt{2005\cdot2007}< 4012+2\cdot2006\\ \Rightarrow\left(\sqrt{2005}+\sqrt{2007}\right)^2< \left(2\sqrt{2006}\right)^2\\ \Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
k đi mình làm cho