Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ax2 - 2bxy + 2bx2 - axy
= ( ax2 - axy ) + ( 2bx2 - 2bxy )
= ax( x - y ) + 2bx( x - y )
= ( x - y )( ax + 2bx )
= x( x - y )( a + 2b )
b) x2 + 2x - 4y2 + 8y - 3 < đã sửa >
= ( x2 + 2x + 1 ) - ( 4y2 - 8y + 4 )
= ( x + 1 )2 - ( 2y - 2 )2
= [ ( x + 1 ) - ( 2y - 2 ) ][ ( x + 1 ) + ( 2y - 2 ) ]
= ( x + 1 - 2y + 2 )( x + 1 + 2y - 2 )
= ( x - 2y + 3 )( x + 2y - 1 )
c) x4 + 5x3 + 20x - 16
= x4 + 5x3 + 4x2 - 4x2 + 20x - 16
= ( x4 + 5x3 - 4x2 ) + ( 4x2 + 20x - 16 )
= x2( x2 + 5x - 4 ) + 4( x2 + 5x - 4 )
= ( x2 + 5x - 4 )( x2 + 4 )
a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-y-2\right)\left(x+y\right)\)
a) \(x^2+2x-4y^2-4y=\left(x^2-4y^2\right)+\left(2x-4y\right)=\left(x+2y\right)\left(x-2y\right)+2\left(x-2y\right)\)
\(=\left(x-2y\right).\left(x+2y+2\right)\)
b) \(x^4-6x^3+54x-81=\left(x^4-81\right)-\left(6x^3-54x\right)=\left(x^2-9\right)\left(x^2+9\right)-6x.\left(x^2-9\right)\)
\(=\left(x^2-9\right).\left(x^2+9-6x\right)=\left(x+3\right).\left(x-3\right).\left(x-3\right)^2=\left(x+3\right).\left(x-3\right)^3\)
c) \(ax^2+ax-bx^2-bx-a+b=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+x.\left(a-b\right)-\left(a-b\right)=\left(a-b\right).\left(x^2+x-1\right)\)
d) \(\left(x^2+y^2-2\right)^2-\left(2xy-2\right)^2=\left(x^2+y^2-2+2xy-2\right).\left(x^2+y^2-2-2xy+2\right)\)
\(=\left(x^2+2xy+y^2-4\right).\left(x^2+y^2-2xy\right)=\left[\left(x+y\right)^2-4\right].\left(x-y\right)^2\)
\(=\left(x+y+2\right).\left(x+y-2\right).\left(x-y\right)^2\)
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
1:
a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
2
\(-2x^2-4x+6=0\)
\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
1,
a) x( x2 + 2x +1) = x(x+1)2
b)25 - (x-2y)2 = (5-x+2y)(5+x-2y)
2,
(x-1)(x+3)=0
<=>x=1 hoặc x=-3
Bài 1: 4a2-4ab+b2-9a2b2
=(2a)2-2.2a.b+b2-(3ab)2
=(2a-b)2-(3ab)2
=(2a-b-3ab)(2a-b+3ab)
a/ (4a2-4ab+b2)-9a2b2
= (2a-b)2-(3ab)2
= (2a-b-3ab) (2a-b+3ab)
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
1a/ x3+x2+x+1=0
x2(x+1).(x+1)=0
=> x2(x+1)=0 x =1
hoặc =>[
x+1=0 x=-1
b/(x+2)2=x+2
x2+2.x.2+22 =x+2
x+x+4x+4=x+2
6x+4=x+2
....
c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0
x2-12 + (6x2+2x)2=0
=> x2-1 = 0 x=1
hoặc => [
(6x2+2x)2=0 x= 0
a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)
b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)
c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)
d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.
a) \(\left(x-2\right)^3+2-x\)
\(=\left(x-2\right)^3-\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(x-2\right)^2-1\right]\)
\(=\left(x-2\right)\left(x-2-1\right)\left(x-2+1\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
b) \(ax^2-2bxy+2bx^2-axy\)
\(=\left(a+2b\right)x^2-\left(a+2b\right)xy\)
\(=\left(a+2b\right)\left(x^2-xy\right)\)
\(=x\left(a+2b\right)\left(x-y\right)\)
c) \(x^2-4xy+4y^2-9a^2\)
\(=\left(x^2-4xy+4y^2\right)-9a^2\)
\(=\left(x-2y\right)^2-\left(3a\right)^2\)
\(=\left(x-2y-3a\right)\left(x-2y+3a\right)\)