\(\sqrt{x^2-x-4}=\sqrt{x-1}\)
b) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

a) \(\sqrt{x^2-x-4}=\sqrt{x-1}\)

\(x^2-x-4=x-1\)

\(x^2-x-4-x+1=0\)

\(x^2-2x-5=0\)

\(\left(x^2-2.x.1+1^2\right)-6=0\)

\(\left(x-1\right)^2=6\)

\(\left\{{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\)         ⇒\(\left\{{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra 

1 tháng 8 2020

bình phương 2 vế ?

a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)

\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)

\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)

\(< =>x^2-5x+6=x^2-30x+225\)

\(< =>25x-219=0\)

\(< =>x=\frac{219}{25}\)

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1