Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có E là trung điểm của CM (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) EF là đường trung bình của (định nghĩa đường trung bình của tam giác)
\(\Rightarrow\) EF//MB (tính chất đường trung bình của tam giác)
hay EF//AB
lại có K là trung điểm của AD (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) KF là đường trung bình của (...)
\(\Rightarrow\) KF//AM (t/c ...)
hay KF//AB
nên EF//KF (vì cùng // với AB)
\(\Rightarrow\) tứ giác EFFIK là hình thang (Định nghĩa hình thang)
Gọi N là trung điểm của AM, nối KM
Ta có N là trung điểm của AM (cách dựng)
K là trung điểm của AD (gt)
\(\Rightarrow\) NK là đường trung bình của
nên NK//DM (t/c....)
mà EN là đường trung bình của (E,I là trung điểm của MC,AM)
\(\Rightarrow\) EI//AC (t/c...)
lại có và là những tam giác đều (gt)
\(\Rightarrow\)
\(\Rightarrow\) AC//DM
tức là NK//EN (cùng //AC//DM)
do đó 3 điểm E,K,N thẳng hàng (theo tiên đề Ơ-clit)
(2góc đồng vị của AC//EN)
(2 góc đồng vị của KF//AM)
nên
C/m tương tự, lấy P là trung điểm của BM ta cũng được
Hình thang EFIK có
Vậy EFIK là hình thang cân (dấu hiệu nhận biết)
b) Ta có EFIK là hình thang cân (kq câu a)
\Rightarrow EI=KF (tính chất 2 đường chéo trong hình thang cân)
E là trung điểm của CM, I là trung điểm của DM (gt)
\(\Rightarrow\) EI là đường trung bình của tam giác CMD
\(\Rightarrow\) EI=
Vậy KF=
a) VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3 + b3 ( đpcm )
b) VP = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3 - b3 ( đpcm )
Áp dụng
a3 - b3 = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= ( a - b )3 + 3ab( a - b )
Thế ab = 8 ; a - b = 12 ta được
( 12 )3 + 3.8.12 = 1728 + 288 = 2016
Được cái khai triển ...
a, \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(VP=a^3+3a^2b+3b^2a+b^3-3a^2b-3ab^2\)
Ta có : \(VP=a^3+b^3\left(đpcm\right)\)
b, \(a^3+b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Cách khác : \(\left(a-b\right)^3+3ab\left(a-b\right)=\left(a-b\right)^3+3ab\left(a-b\right)\)
Ta có đpcm
Ta có : \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay ab = 8 và a - b = 12 :
\(12^3+3.8.12=2016\)
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
C/M:
a)a^3+b^3=(a+b)^3-3a*b*(a+b)
VP=a^3+3*a^2*b+3*a*b^2+b^3-3*a^2*b-3*a*b^2
=a^3+b^3
Thay:a*b=6 và a+b=-5
Ta có:a^3+b^3=(a+b)*(a^2*a*b*b^2) =-5*(a^2*6*b^2)
Mà:a*b=6 nên a2*b2=62=36
Suy ra: =-5*(36*6)=-1080
Tương tự như câu a) làm câu b).Chúc bạn làm được câu b).
Mình không biết làm đúng hay sai nhan.Nhưng bạn cứ chép đáp án vào.
1. biến đổi vế trái
= a2x2 + a2y2 + b2x2 + b2y2
= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy
= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)
1.\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
=>\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(a/d t/c của dãy tỉ số bằng nhau)
=>\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)