Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì M trung điểm DF => MD=MF
K đối xứng với M qua I => KM=MI
=> DKFI là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đg)
Mà có ^I=90o ( DI là đường cao)
=> DKFI là hcn ( hbh có 1 góc _|_)
b) Vì DKFI là hcn=> ^D=^K=^I=^F=90 độ
=> IK_|_DF => DKFI là hình vuông (theo dấu hiệu nhận bt)
Để \(\Delta\)DEF cần thêm đk là hình vuông => DK_|_KF
=> DE=DF ( \(\Delta\)DEF trở thành \(\Delta\) cân )
Mà lại có DI là đường cao
=> \(\Delta\) DEF là \(\Delta\) vuông cân
Vậy \(\Delta\)DEF cần điều kiện DK_|_KF
a: Xét tứ giác DKFH có
I là trung điểm của DF
I là trung điểm của KH
Do đó: DKFH là hình bình hành
mà \(\widehat{DKF}=90^0\)
nên DKFH là hình chữ nhật
a: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
mà AB=AC
nên ABKC là hình thoi
a: Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
Hình bình hành ABKC có AB=AC
nên ABKC là hình thoi
b: Hình thoi ABKC trở thành hình vuông khi \(\widehat{BAC}=90^0\)
c: Ta có:ABKC là hình thoi
=>AB//KC
mà C\(\in\)KD
nên AB//CD
Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
=>AD=BC