K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

░░█▒▒▒▒░░░░▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒█ ░░░░█▒▒▄▀▀▀▀▀▄▄▒▒▒▒▒▒▒▒▒▄▄▀▀▀▀▀▀▄ ░░▄▀▒▒▒▄█████▄▒█▒▒▒▒▒▒▒█▒▄█████▄▒█ ░█▒▒▒▒▐██▄████▌▒█▒▒▒▒▒█▒▐██▄████▌▒█ ▀▒▒▒▒▒▒▀█████▀▒▒█▒░▄▒▄█▒▒▀█████▀▒▒▒█ ▒▒▐▒▒▒░░░░▒▒▒▒▒█▒░▒▒▀▒▒█▒▒▒▒▒▒▒▒▒▒▒▒█ ▒▌▒▒▒░░░▒▒▒▒▒▄▀▒░▒▄█▄█▄▒▀▄▒▒▒▒▒▒▒▒▒▒▒▌ ▒▌▒▒▒▒░▒▒▒▒▒▒▀▄▒▒█▌▌▌▌▌█▄▀▒▒▒▒▒▒▒▒▒▒▒▐ ▒▐▒▒▒▒▒▒▒▒▒▒▒▒▒▌▒▒▀███▀▒▌▒▒▒▒▒▒▒▒▒▒▒▒▌ ▀▀▄▒▒▒▒▒▒▒▒▒▒▒▌▒▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▒▒█ ▀▄▒▀▄▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▄▄▄▄▒▒▒▒▒▒▄▄▀ ▒▒▀▄▒▀▄▀▀▀▄▀▀▀▀▄▄▄▄▄▄▄▀░░░░▀▀▀▀▀▀ ▒▒▒▒▀▄▐▒▒▒▒▒▒▒▒▒▒▒▒▒▐ ▒█▀▀▄ █▀▀█ █▀▀█ █▀▀█   ▀▀█▀▀ █░░█ █▀▀   ▒█▀▀█ █▀▀█ █▀▀ █▀▀ ▒█░▒█ █▄▄▀ █░░█ █░░█   ░▒█░░ █▀▀█ █▀▀   ▒█▀▀▄ █▄▄█ ▀▀█ ▀▀█ ▒█▄▄▀ ▀░▀▀ ▀▀▀▀ █▀▀▀   ░▒█░░ ▀░░▀ ▀▀▀   ▒█▄▄█ ▀░░▀ ▀▀▀ ▀▀▀ ║████║░░║████║████╠═══╦═════╗ ╚╗██╔╝░░╚╗██╔╩╗██╠╝███║█████║ ░║██║░░░░║██║╔╝██║███╔╣██══╦╝ ░║██║╔══╗║██║║██████═╣║████║ ╔╝██╚╝██╠╝██╚╬═██║███╚╣██══╩╗ ║███████║████║████║███║█████║

5 tháng 9 2018

rap ng bn 4 chan

10 tháng 3 2021

Câu 1. B) m ≠ ±3

Câu 2. B) 3 

Câu 3. C) 8cm

Câu 4. C) AB.DF = AC.DE

Câu 5. B) AC = 6cm

không hiểu chỗ nào ib mình giảng

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh a) Tam giác ABH đồng dạng tam giác ACE b) Tam giác BHC đồng dạng tam giác CFA c) Tổng AB.AE+AD.AF không đổi Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: a) IH.AB=IA.BH b) BHA đồng dạng BAC...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh 
a) Tam giác ABH đồng dạng tam giác ACE 
b) Tam giác BHC đồng dạng tam giác CFA 
c) Tổng AB.AE+AD.AF không đổi 
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: 
a) IH.AB=IA.BH 
b) BHA đồng dạng BAC => AB^2=BH.BC 
c) IH/IA = AE/EC 
d) AIE cân 
Câu 3: Cho góc nhọn xOy, lần lượt lấy trên Ox các điểm A,B sao cho OA= 3 cm, OB=10cm. Trên Oy lấy lần lượt các điểm C,D sao cho OC=5cm, OD=6cm. Hai đoạn thẳngAD và BC cắt nhau tại I: 
a) AOD đồng dạng COB 
b) AIB đồng dạng CID 
c) IA.ID=IC.IB 
d) Cho diện tích ICD= 3 cm^2. Hãy tính diện tích của IAB?

0
BÀI 1    Cho tam giác ABC có AB=2cm; AC=4cm. Qua B dựng đường thẳng cắt đoạn thẳng AC tại D sao cko ^ABD=^ACB     a) C/m tam giác ABD đồng dạng với tam giác ACB     b) Tính AD, DC      c) Gọi AH là đường cao của t giác ABC , AE là đường cao của t giác ABD. Chứng tỏ SABH = 4SADEBÀI 2      Cho t giác ABC vuông tại A, đường cao AH       a) C/m t giác ABC đồng dạng t giác HBA       b) GỌi I, K lần...
Đọc tiếp

BÀI 1
    Cho tam giác ABC có AB=2cm; AC=4cm. Qua B dựng đường thẳng cắt đoạn thẳng AC tại D sao cko ^ABD=^ACB
     a) C/m tam giác ABD đồng dạng với tam giác ACB
     b) Tính AD, DC
      c) Gọi AH là đường cao của t giác ABC , AE là đường cao của t giác ABD. Chứng tỏ SABH = 4SADE

BÀI 2
      Cho t giác ABC vuông tại A, đường cao AH

       a) C/m t giác ABC đồng dạng t giác HBA

       b) GỌi I, K lần lượt là hinhg chiếu của H lên AB, AC C/m AI.AB=AK.AC

       c) cko BC=10cm AH=4cm. TÍnh diện tích t giác AIK

BÀI 3

CKo t giác ABC vuông tại A có AB=6cm; AC=8cm. Qua Aker 1 đường thẳng d // với BC, vẽ CD vuông góc d(tại D)
        a) C/m 2 t giác ADC và CAB đồng dạng 
        b) Tính DC
        c) Tính diện tích hình thang vuông ABCD
CÁC BẠN AI BIẾT GIÚP MÌNH VỚI

 

0
Bài 1:Cho góc xAy khác góc bẹt, trên cạnh Ax lấy điểm B sao cho AB=5cm, trên cạnh Ay lần lượt lấy hai điểm C và D sao cho AC = 4cm, AD = 10. Qua D kẻ đường thẳng song song với BC cắt Ax tại E. Tính BE và tỉ số diện tích. hai tam giác ABC và AED.Bài 2:a) Cho tam giác ABC có AB = 6cm, AC = 9cm, BC =10cm, đường, phân giác AD, D thuộc BC. Tính DB, DC.b) Trên cạnh AC lấy điểm E sao cho góc AEB = góc ADB. Gọi M là giao...
Đọc tiếp

Bài 1:
Cho góc xAy khác góc bẹt, trên cạnh Ax lấy điểm B sao cho AB=5cm, trên cạnh Ay lần lượt lấy hai điểm C và D sao cho AC = 4cm, AD = 10. Qua D kẻ đường thẳng song song với BC cắt Ax tại E. Tính BE và tỉ số diện tích. hai tam giác ABC và AED.
Bài 2:
a) Cho tam giác ABC có AB = 6cm, AC = 9cm, BC =10cm, đường, phân giác AD, D thuộc BC. Tính DB, DC.
b) Trên cạnh AC lấy điểm E sao cho góc AEB = góc ADB. Gọi M là giao điểm của BE và AD. Chứng minh hai tam giác AME và tam giác BMD đồng dạng.
Bài 3:
Cột cờ của trường vào những ngày có năng, lúc 14 giờ thường có bóng dài 10m, cùng lúc đó một học sinh đứng ở sân trường thì có bóng dỗ dài 1m, biết rằng em học sinh đó cao 1,5m. Hỏi cột cờ của trường cao bao nhiêu mét?
Bài 4:
Cho tam giác ABC vuông tại A, M là điểm di chuyển trên cạnh AC, M khác A và C. Vẽ đường thẳng Cx vuông góc với tia BM tại H, CA cắt tia BA tại D.
a) Chứng minh hai tam giác DHB và tam giác DAC đồng dạng.
b) Chứng tỏ góc AHD có số đo không đổi khi M di chuyển trên cạnh AC

0
30 tháng 3 2018

a)   \(\Delta ABC\)có    \(AD\)  là phân giác   \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\) (tính chất đường phân giác trong tam giác)

hay  \(\frac{BD}{8}=\frac{DC}{10}=\frac{BD+DC}{8+10}=\frac{9}{18}=\frac{1}{2}\)

suy ra:    \(BD=\frac{8}{2}=4\)

              \(DC=\frac{10}{2}=5\)