Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ON là phân giác góc DOB
Chứng minh:
Ta có: ^DOn = ^COm ( đối đỉnh)
^BOn = ^AOm ( đối đỉnh)
Mà ^AOm = ^COm ( Om là phân giác góc AOC)
-> ^DOn = ^BOn
=> On là phân giác góc DOB
Bài giải
Ta có : Hai đường thẳng AB và CD cắt nhau tại O
\(\Rightarrow\) Sẽ tạo thành hai cặp góc đổi đỉnh
Mà hai góc đối đỉnh thì bằng nhau \(\Rightarrow\) \(\widehat{AOC}=\widehat{BOD}\) , \(\widehat{AOD}=\widehat{COB}\)
Mà On là tia đối của Om ( Om là tia phân giác của góc AOC )
\(\Rightarrow\) On là tia phân giác của góc \(BOD\)
Ta có: Om là tia phân giác của góc AOC => AOm = COm = AOC : 2 (1)
Ta có: COm + COn = mOn
=> COm + COn = 900
Mà: AOm = COm ( chứng minh (1) )
=> AOm + COn = 900 (2)
Ta có: AOm + mOn + BOn = AOB
=> AOm + 900 + BOn = 1800
=> AOm + BOn = 1800 - 900
=> AOm + BOn = 900 (3)
Từ (2) và (3) => COn = BOn
Mà On nằm giữa 2 tia OC và OB
=> On là tia phân giác của góc BOC
Vậy On là tia phân giác của góc BOC
Chuk bn hk tốt!
bài làm
đọ dài OAB là
(160+120):2=140
độ dài boc là
(160-120):2=20
đáp số...
Ta có :
+) AB // OM
⇔BAOˆ+MOAˆ=1800⇔BAO^+MOA^=1800 (2 góc trong cùng phía)
⇔MOAˆ=1800−BAOˆ=1800−1200=600⇔MOA^=1800−BAO^=1800−1200=600
+) OM // CP
⇔PCOˆ+MOCˆ=1800⇔PCO^+MOC^=1800 (2 góc trong cùng phía)
⇔MOCˆ=1800−PCOˆ=1800−1200=600⇔MOC^=1800−PCO^=1800−1200=600
Ta có :
AOMˆ=MOCˆ=600AOM^=MOC^=600
Mà Om nằm giữa OA; OC
⇔đpcm