Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a.Ta có MC là tiếp tuyến của (O)
\(\Rightarrow MC\perp OC\)
Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp
b.Vì MC là tiếp tuyến của (O)
\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)
\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)
c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)
\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)
\(\Rightarrow\Delta DCN\) cân
d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)
\(\Rightarrow BKFD\) nội tiếp
\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)
\(+\widehat{FCD}=\widehat{FCE}\)
Vì MC là tiếp tuyến của (O)
\(\Rightarrow CEDF\) nội tiếp
a) Ta có I là trung điểm MN
=> OI vuông MN
Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì AB là tiếp tuyến(O; R))
và \(\widehat{AIO}=90^o\)
=> \(\widehat{AIO}+\widehat{ABO}=180^o\)
=> Tứ giác ABOI nội tiếp (1)
Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))
Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)
=> Tứ giác ABOC nội tiếp (2)
Như vậy A,B, C, O, I cùng nằm trên môt đường tròn
b) AB=OB mà AB=AC; OB=OC
=> AB=AC=OB=OC
=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)
=> ABOC là hình vuông
c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:
\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)
Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận AO là cạnh huyền
=> JA=JB=JC=JO
=> J là tâm đường tròn ngoại tiếp ABOC
như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)
Có bán kính rồi em tính diện tích và chu vi đi nhé!
a: góc SAO+góc SBO=180 độ
=>SAOB nội tiếp
c: Xét ΔSAD và ΔSCA có
góc SAD=góc SCA
góc ASD chung
=>ΔSAD đồng dạng vớiΔSCA
a)
ta có SA= SB(t/c tiếp tuyến cắt nhau)
nên tam giác SAB cân ở S
do đó SO vừa là phân giác vừa là đường cao nên SO vuông góc AB
I là trung điểm của MN nên OI vuông góc MN
do đó góc SHE=SIE = 90 độ
hai điểm H và I cùng nhìn đoạn SE dưới 1 góc vuông nên tứ giác IHSE nội tiếp
b) SOI đồng dạng với EOH vì có O chung
$\widehat{SHE}=\widehat{SIE}$ =90 độ chứng minh trên
suy ra $\dfrac{OI}{OH}$ = $\dfrac{OS}{OE}$
mà OH.OS = OB^2 = R^2(hệ thức lượng trong tam giác vuông SOB
nên OI.OE=R^2 (DPCM)
a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)
nên SAOB là tứ giác nội tiếp(1)
Xét tứ giác OISB có \(\widehat{OIS}+\widehat{OBS}=180^0\)
nên OISB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra S,A,I,O,B cùng thuộc một đường tròn
b: Xét ΔSAM và ΔSNA có
\(\widehat{SAM}=\widehat{SNA}\)
\(\widehat{NSA}\) chung
Do đó: ΔSAM\(\sim\)ΔSNA
SUy ra: SA/SN=SM/SA
hay \(SA^2=SM\cdot SN\)
c: OS=3*2=6(cm)
=>R1=6/2=3(cm)
Diện tích hình tròn ngoại tiếp tứ giác SEOF là \(3^2\cdot3,14=28,26\left(cm^2\right)\)