K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

Ta có : A = 1 + 22 + 24 + ... + 2100

=> 22A = 4A = 22 + 24 + 26 + ... + 2102 

=> 4A - A = (22 + 24 + 26 + ... + 2102) - (1 + 22 + 24 + ... + 2100)

=> 3A = 2102 - 1

=> 3A + 1 = 2102 

=> 3A + 1 là 1 lũy thừa

b) 3A + 1 = 4x

=> 2102 = 22x

<=> x = 2100

30 tháng 9 2016

A=1+2+22+23+...+2200

2A=2+22+23+24+...+2201

2A-A=(2+22+23+24+...+2201) - (1+2+22+23+...+2200)

A=2201-1

=>A+1=2201

B=3+32+33+...+32005

3B=32+33+34+...+32006

3B-B=(32+33+34+...+32006) - (3+32+33+...+32005)

2B=32006-3

2B+3=32006 là lũy thừa của 3 (đpcm)

30 tháng 9 2016

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22  + 23 + 24 + ... + 2201

2A - A = ( 2 + 22 + 23 + 24 + ... + 2201 ) - ( 1 + 2 + 22 + 23 + ... + 2200 )

A = 2201 - 1

9 tháng 12 2019

Bài 2

A = 1 + 2 + 2+ 23 + ... + 2200

2A = 2 + 22 + 2+ 24 + ... + 2201

2A - A = (2 + 22 + 2+ 24 + ... + 2201) - (1 + 2 + 2+ 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Bài 3

B = 3 + 3+ 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 3+ 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006

8 tháng 11 2018

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

9 tháng 11 2018

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

15 tháng 11 2017

a, Có 2A = 4.2+2^3+2^4+...+2^21

A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21

=> A là lũy thừa cơ số 2

b, Có 3A=3^2+3^3+3^4+...+3^101

2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3

=> 2A+3 = 3^101-3+3 = 3^101

=> A là lũy thừa của 3

k mk nha

18 tháng 5 2017

2A=2+2223+...+230

2A-A=(2+2223+...+231)-(1+2+2223+...+230)

A=231-1

A+1=231-1+1

A+1=2^31

=> A+1 là 1 lũy thừa

18 tháng 5 2017

Ta có : A = \(1+2+2^2+2^3+...+\)\(2^{30}\)

=>     2A =          \(2+2^2+2^3+...+2^{30}+2^{31}\) 

=> 2A-A=A =  \(2^{31}-1\)

=> A+1 = \(2^{31}\)Là 1 lũy thừa => đpcm

30 tháng 4 2021

Bài 1:
\(\frac{155.155-155.141}{114}=\frac{155.14}{114}=\frac{1085}{57}\)
Bài 2:
\(4x^3+12=120\)
\(4x^3=108\)
\(x^3=27\)
\(x=3\)
Vậy \(x=3\).
Bài 3:
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=2^{51}-1\)
\(A+1=2^{51}\Rightarrow A+1\)là một lũy thừa của 2.

21 tháng 9 2016

Ta có : A = 4 + 22 + 2+ 2+.......+ 249 + 250

=> 2A = 8 + 23 + 24 + 25 + ..... + 250 + 251

=> 2A - A = 251 + 8 - 4 - 22

=> A = 251 

b) sai đề

21 tháng 9 2016

Tại sao lại sai đề hả bạn?

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3