K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

a) \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)

\(=\left(9x^3-5x^3\right)-\left(2x^2+2x^2\right)+\left(x-x\right)+1\)

\(=4x^3-4x^2+1\)

\(C\left(x\right)=x^3-2x\left(3x+1\right)-4\)

\(=x^3-6x^2-2x-4\)

b) \(A\left(x\right)+C\left(x\right)=4x^3-4x^2+1+x^3-6x^2-2x-4\)

\(=\left(4x^3+x^3\right)-\left(4x^2+6x^2\right)-2x+\left(1-4\right)\)

\(=5x^3-10x^2-2x-3\)

\(A\left(x\right)-C\left(x\right)=4x^3-4x^2+1-\left(x^3-6x^2-2x-4\right)\)

\(=4x^3-4x^2+1-x^3+6x^2+2x+4\)

\(=\left(4x^3-x^3\right)+\left(6x^2-4x^2\right)+2x+\left(1+4\right)\)

\(=3x^3+2x^2+2x+5\)

9 tháng 6 2021

a, \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)

\(=4x^3-4x^2+x-x+1=4x^3-4x^2+1\)

\(C\left(x\right)=x^3-2x\left(3x+1\right)-4=x^3-6x^2-2x-4\)

b, \(A\left(x\right)+C\left(x\right)=5x^3-10x^2-2x-3\)

\(A\left(x\right)-C\left(x\right)=3x^3+2x^2+2x+5\)

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

3 tháng 5 2023

\(a,P\left(x\right)=2x^2+4x+5x^3-6\\ =5x^3+2x^2+4x-6\\ Q\left(x\right)=3x+x-5x^2-1\\ =-5x^2+\left(3x+1\right)-1\\ =-5x^2+4x-1\)

\(b,P\left(x\right)+Q\left(x\right)=5x^3+2x^2+4x-6-5x^2+4x-1\\ =5x^3+\left(2x^2-5x^2\right)+\left(4x+4x\right)+\left(-6-1\right)\\ =5x^3-3x^2+8x-7\)

Vậy \(P\left(x\right)+Q\left(x\right)=5x^3-3x^2+8x-7\)

\(P\left(x\right)-Q\left(x\right)=5x^3+2x^2+4x-6-\left(-5x^3+4x-1\right)\\ =5x^3+2x^2+4x-6+5x^3-4x+1\\ =\left(5x^3+5x^3\right)+2x^2+\left(4x-4x\right)+\left(-6+1\right)\\ =10x^3+2x^2+0-5\\ =10x^3+2x^2-5\)

Vậy \(P\left(x\right)-Q\left(x\right)=10x^3+2x^2-5\)

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$

$=2x^4-4x^3+2x^2-x+1$

b) 
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$

$P(1)=2-4+2-1+1=0$

c.

$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$

$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$

a) Ta có: \(B\left(x\right)=-2x^3+2x^2+12+5x^2-9x\)

\(=-2x^3+7x^2-9x+12\)

b) Ta có: A(x)+B(x)

\(=4x^3-7x^2+3x-12-2x^3+7x^2-9x+12\)

\(=2x^3-6x\)

b) Ta có: A(x)-B(x)

\(=4x^3-7x^2+3x-12+2x^3-7x^2+9x-12\)

\(=6x^3-14x^2+12x-24\)

22 tháng 6 2021

a) 

f(x) = x2 - x + 5

g(x) = -x2 + 2x + 3

b)

h(x) = f(x) + g(x) = x2 - x + 5 - x2 + 2x + 3 

= x + 8

22 tháng 6 2021

undefined

6 tháng 5 2022

\(a)A\left(x\right)=5+3x^2-x-2x^2\)

\(A\left(x\right)=\left(3x^2-2x^2\right)-x+5\)

\(A\left(x\right)=x^2-x+5\)

\(B\left(x\right)=3x+3-x-x^2\)

\(B\left(x\right)=-x^2+\left(3x-x\right)+3\)

\(B\left(x\right)=-x^2+2x+3\)

\(b)C\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(C\left(x\right)=\left(x^2-x+5\right)+\left(-x^2+2x+3\right)\)

\(C\left(x\right)=x^2-x+5+-x^2+2x+3\)

\(C\left(x\right)=\left(x^2-x^2\right)+\left(-x+2x\right)+\left(5+3\right)\)

\(C\left(x\right)=-x+8\)

\(c)D\left(x\right)=A\left(x\right)-B\left(x\right)\)

\(D\left(x\right)=\left(x^2-x+5\right)-\left(-x^2+2x+3\right)\)

\(D\left(x\right)=x^2-x+5+x^2-2x-3\)

\(D\left(x\right)=\left(x^2+x^2\right)+\left(-x-2x\right)+\left(5-3\right)\)

\(D\left(x\right)=2x^2-3x+2\)

6 tháng 5 2022

wá ghê gớm;-;

a) \(A\left(x\right)=5+3x^2-x-2x^2\) 

    \(A\left(x\right)=5+\left(3x^2-2x^2\right)-x\)

    \(A\left(x\right)=5+x^2-x\)

    \(A\left(x\right)=x^2-x+5\)

 

    \(B\left(x\right)=3x+3-x-x^2\)

   \(B\left(x\right)=\left(3x-x\right)+3-x^2\)

   \(B\left(x\right)=2x+3-x^2\)

   \(B\left(x\right)=-x^2+2x+3\)

 

b) Ta có \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)

    \(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^+B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)+B\left(x\right)=0+x+8}\end{matrix}\)

Vậy \(C\left(x\right)=x+8\)

c) Ta có \(D\left(x\right)=A\left(x\right)-B\left(x\right)\)

        \(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^-B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)-B\left(x\right)=2x^2-3x+2}\end{matrix}\)

Vậy \(D\left(x\right)=2x^2-3x+2\)

Ở câu b, \(A\left(x\right)+B\left(x\right)=0+x+8\) số 0 bạn bỏ rồi để khoảng trống \(A\left(x\right)+B\left(x\right)=\)     \(x+8\) như vậy nha, với các dấu \(=\) ở câu b và c với cái số bạn đặt thẳng hàng nha (các từ in đậm bạn không cần ghi)

 

4 tháng 3 2022

a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)

b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)

c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)

4 tháng 3 2022

a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)

\(=8x^5-3x^5-6x^2+2x^2+7x+1\)

\(=5x^5-4x^2+7x+1\)

\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)

\(=4x^5+x^5-2x^2-2x^2+3x+8\)

\(=5x^5-4x^2+3x+8\)

b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)

+  \(Q\left(x\right)=5x^5-4x^2+3x+8\)

____________________________

\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)

c/ \(P\left(x\right)=Q\left(x\right)\)

\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)

\(\Rightarrow7x+1=3x+8\)

\(\Rightarrow4x-7=0\)

\(\Rightarrow x=\dfrac{7}{4}\)