Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)
\(=4x^3-4x^2+1\)
\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)
\(=-2x^3-3x-2\)
\(C=x^3-6x^2+2x-4\)
b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)
\(=3x^3-10x^2-x-4\)
\(a,P\left(x\right)=2x^2+4x+5x^3-6\\ =5x^3+2x^2+4x-6\\ Q\left(x\right)=3x+x-5x^2-1\\ =-5x^2+\left(3x+1\right)-1\\ =-5x^2+4x-1\)
\(b,P\left(x\right)+Q\left(x\right)=5x^3+2x^2+4x-6-5x^2+4x-1\\ =5x^3+\left(2x^2-5x^2\right)+\left(4x+4x\right)+\left(-6-1\right)\\ =5x^3-3x^2+8x-7\)
Vậy \(P\left(x\right)+Q\left(x\right)=5x^3-3x^2+8x-7\)
\(P\left(x\right)-Q\left(x\right)=5x^3+2x^2+4x-6-\left(-5x^3+4x-1\right)\\ =5x^3+2x^2+4x-6+5x^3-4x+1\\ =\left(5x^3+5x^3\right)+2x^2+\left(4x-4x\right)+\left(-6+1\right)\\ =10x^3+2x^2+0-5\\ =10x^3+2x^2-5\)
Vậy \(P\left(x\right)-Q\left(x\right)=10x^3+2x^2-5\)
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
Lời giải:
a.
$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$
$=2x^4-4x^3+2x^2-x+1$
b)
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$
$P(1)=2-4+2-1+1=0$
c.
$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$
$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$
a) Ta có: \(B\left(x\right)=-2x^3+2x^2+12+5x^2-9x\)
\(=-2x^3+7x^2-9x+12\)
b) Ta có: A(x)+B(x)
\(=4x^3-7x^2+3x-12-2x^3+7x^2-9x+12\)
\(=2x^3-6x\)
b) Ta có: A(x)-B(x)
\(=4x^3-7x^2+3x-12+2x^3-7x^2+9x-12\)
\(=6x^3-14x^2+12x-24\)
a)
f(x) = x2 - x + 5
g(x) = -x2 + 2x + 3
b)
h(x) = f(x) + g(x) = x2 - x + 5 - x2 + 2x + 3
= x + 8
\(a)A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=\left(3x^2-2x^2\right)-x+5\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=-x^2+\left(3x-x\right)+3\)
\(B\left(x\right)=-x^2+2x+3\)
\(b)C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(C\left(x\right)=\left(x^2-x+5\right)+\left(-x^2+2x+3\right)\)
\(C\left(x\right)=x^2-x+5+-x^2+2x+3\)
\(C\left(x\right)=\left(x^2-x^2\right)+\left(-x+2x\right)+\left(5+3\right)\)
\(C\left(x\right)=-x+8\)
\(c)D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(D\left(x\right)=\left(x^2-x+5\right)-\left(-x^2+2x+3\right)\)
\(D\left(x\right)=x^2-x+5+x^2-2x-3\)
\(D\left(x\right)=\left(x^2+x^2\right)+\left(-x-2x\right)+\left(5-3\right)\)
\(D\left(x\right)=2x^2-3x+2\)
a) \(A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=5+\left(3x^2-2x^2\right)-x\)
\(A\left(x\right)=5+x^2-x\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=\left(3x-x\right)+3-x^2\)
\(B\left(x\right)=2x+3-x^2\)
\(B\left(x\right)=-x^2+2x+3\)
b) Ta có \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^+B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)+B\left(x\right)=0+x+8}\end{matrix}\)
Vậy \(C\left(x\right)=x+8\)
c) Ta có \(D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^-B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)-B\left(x\right)=2x^2-3x+2}\end{matrix}\)
Vậy \(D\left(x\right)=2x^2-3x+2\)
Ở câu b, \(A\left(x\right)+B\left(x\right)=0+x+8\) số 0 bạn bỏ rồi để khoảng trống \(A\left(x\right)+B\left(x\right)=\) \(x+8\) như vậy nha, với các dấu \(=\) ở câu b và c với cái số bạn đặt thẳng hàng nha (các từ in đậm bạn không cần ghi)
a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)
b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)
a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)
\(=8x^5-3x^5-6x^2+2x^2+7x+1\)
\(=5x^5-4x^2+7x+1\)
\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)
\(=4x^5+x^5-2x^2-2x^2+3x+8\)
\(=5x^5-4x^2+3x+8\)
b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)
+ \(Q\left(x\right)=5x^5-4x^2+3x+8\)
____________________________
\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c/ \(P\left(x\right)=Q\left(x\right)\)
\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)
\(\Rightarrow7x+1=3x+8\)
\(\Rightarrow4x-7=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
a) \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)
\(=\left(9x^3-5x^3\right)-\left(2x^2+2x^2\right)+\left(x-x\right)+1\)
\(=4x^3-4x^2+1\)
\(C\left(x\right)=x^3-2x\left(3x+1\right)-4\)
\(=x^3-6x^2-2x-4\)
b) \(A\left(x\right)+C\left(x\right)=4x^3-4x^2+1+x^3-6x^2-2x-4\)
\(=\left(4x^3+x^3\right)-\left(4x^2+6x^2\right)-2x+\left(1-4\right)\)
\(=5x^3-10x^2-2x-3\)
\(A\left(x\right)-C\left(x\right)=4x^3-4x^2+1-\left(x^3-6x^2-2x-4\right)\)
\(=4x^3-4x^2+1-x^3+6x^2+2x+4\)
\(=\left(4x^3-x^3\right)+\left(6x^2-4x^2\right)+2x+\left(1+4\right)\)
\(=3x^3+2x^2+2x+5\)
a, \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)
\(=4x^3-4x^2+x-x+1=4x^3-4x^2+1\)
\(C\left(x\right)=x^3-2x\left(3x+1\right)-4=x^3-6x^2-2x-4\)
b, \(A\left(x\right)+C\left(x\right)=5x^3-10x^2-2x-3\)
\(A\left(x\right)-C\left(x\right)=3x^3+2x^2+2x+5\)