Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, f(1)=1+1+2
f(căn bậc 2)=2+1=3
b,A(a;2) suy ra x=a,y=2
suy ra 2=ma.suy ra m=2/a
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(y=f\left(x\right)=-\frac{1}{2}x\)
\(f\left(-2\right)=-\frac{1}{2}.\left(-2\right)=1\)
\(f\left(3\right)=-\frac{1}{2}.3=-\frac{3}{2}\)
b)
Cho \(x=1\Rightarrow y=-\frac{1}{2}.1=-\frac{1}{2}\)
\(\Rightarrow A\left(1;-\frac{1}{2}\right)\)
O 1 2 1 2 -1 -2 -1 -2 -1/2 A y=-1/2x
Hình ko đẹp lắm mong cậu thông cảm
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
Bài 2:
Thay x=2 và y=-2 vào (d), ta được:
m|2|=-2
=>m=-1