Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2018}=0\)
Ta luôn có: \(\left(2x-5\right)^{2018}\ge0\forall x;\left(3y+4\right)\ge0\forall y\)
Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2018}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{2};\frac{-4}{3}\right)\)
\(\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-10^3\right)\cdot,,,\cdot\left(1000-50^3\right)\)
Vì \(1000-10^3=1000-1000=0\) nên \(\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-50^3\right)=0\)
Bạn à
trong các thừa số trên có một thừa số là 0
đó là \(1000-1^3=0\)
Ta có:\(\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot\cdot\cdot\left(1000-50^3\right)=0\)
c: Ta có: \(\dfrac{2}{5}\cdot\left[\left(\dfrac{3}{5}\right)^2:\left(-\dfrac{1}{5}\right)^2-7\right]\cdot\left(1000\right)^0\cdot\left|-\dfrac{11}{15}\right|\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{9}{25}:\dfrac{1}{25}-7\right)\cdot1\cdot\dfrac{11}{15}\)
\(=\dfrac{2}{5}\cdot\dfrac{11}{15}\cdot2\)
\(=\dfrac{44}{75}\)
à mk phát hiện ra cái này k cho mk nhé
tất cả các phân số đấy đều bằng 1
(1000 - 13) x (1000 - 23) x (1000 - 33) x ... x (1000 - 103) x ... x (1000 - 503)
= (1000 - 13) x (1000 - 23) x (1000 - 33) x ... x (1000 - 1000) x ... x (1000 - 503)
= (1000 - 13) x (1000 - 23) x (1000 - 33) x ... x 0 x ... x (1000 - 503)
= 0
\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)