Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
ta có : a) xy- 5x + y = 17
=) x . ( y - 5 ) . ( y - 5 ) = 17 - 5
=) (x+1) . ( y - 5 ) = 12
=) x + 1 \(\in\) { 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) x \(\in\){ 11 ; 5 ; 2 ;1 ; 0 ; 3 }
=) y - 5 \(\in\){ 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) y \(\in\){ 17 ; 11 ; 8 ; 7 ; 6 ; 9 }
vậy ta có 6 TH x,y là : ( 0 ; 17 ) , ( 1 ; 11 ) , ( 2 ; 9 ) , ( 11 ; 6 ) , ( 5 ; 7 ) , ( 3 ; 8 )
Bài giải
a) xy - 5x + y = 17
x(y - 5) + y = 17
x(y - 5) + y - 5 = 17 - 5 = 12
x(y - 5) + (y - 5) = 12
x(y - 5) + 1(y - 5) = 12
(x + 1)(y - 5) = 12
Bạn tự làm tiếp nha, xem số nào nhân với số nào bằng 12 rồi làm tiếp.
b) 3x + 4y - xy = 15
3x + (4y - xy) = 15
3x + y(4 - x) = 15
12 - [3x + y(4 - x)] = 12 - 15 = -3
12 - 3x - y(4 - x) = -3 (12 - 3x = 3.4 - 3x = 3(4 - x))
3(4 - x) - y(4 - x) = -3
(3 - y)
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
Bài 1: Tìm x, y nguyên biết :
a) 4x + 2xy + y = 7
=> 2.x(y-2)+(y-2)=5
=> ( y-2)(2x+1)= 5
Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | 1 | -3 | 7 | 3 |
Điều kiện: t/m
Vậy:....
phần b và c tương tự
a: 2xy-4x+3y=42
=>\(\left(2xy-4x\right)+3y-6=36\)
=>\(2x\left(y-2\right)+3\left(y-2\right)=36\)
=>\(\left(2x+3\right)\left(y-2\right)=36\)
mà 2x+3 lẻ(do x nguyên)
nên \(\left(2x+3\right)\left(y-2\right)=1\cdot36=\left(-1\right)\cdot\left(-36\right)=3\cdot12=\left(-3\right)\cdot\left(-12\right)=9\cdot4=\left(-9\right)\cdot\left(-4\right)\)
=>\(\left(2x+3;y-2\right)\in\left\{\left(1;36\right);\left(-1;-36\right);\left(3;12\right);\left(-3;-12\right);\left(9;4\right);\left(-9;-4\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;38\right);\left(-2;-34\right);\left(0;14\right);\left(-3;-10\right);\left(3;6\right);\left(-6;-4\right)\right\}\)