Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)
34 + (9-21)=3417-(x+341)
22 = 3417-(x+341)
3417-(x+341)=22
x+341=3417-22
x+341=3395
x=3395-341 ; x =3054
Xin lỗi Quảng Bùi Quỳnh Trang, tớ lỡ bấm vào sai rồi
I'm sorry
|x - 2| + |x + y| + |y +2z| = 0
=> |x - 2| = |x + y| = |y +2z| = 0
=> x= 0 + 2 = 2
=> |2 + y| = 0=> y = -2
=> |-2 + 2z| = 0 => 2z = 2 => z = 1
Đề phải là \(\left|x+5\right|+\left|y-4\right|+\left|z-2\right|=0\)
Vì trị tuyệt dối luôn lớn hơn hoặc bằng 0 mà tổng các trị tuyệt đối = 0 nên
\(x+5=0\Leftrightarrow x=-5\)
\(y-4=0\Leftrightarrow y=4\)
\(z-2=0\Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(-5;4;2\right)\)
a) \(6x-39=6528:28\)
\(6x-39=\frac{1632}{7}\)
\(6x=\frac{1632}{7}+39\)
\(6x=\frac{1905}{7}\)
\(x=\frac{1905}{7}:6\)
\(x=\frac{635}{14}\)
b) \(2^{x+1}+54=86\)
\(2^{x+1}=32\)
\(2x.2^2=32\)
\(2x=8\)
\(x=4\)
c) \(\left|x-18\right|.2^{2018}=2^{2020}\)
\(\left|x-18\right|=2^{2020}:2^{2018}\)
\(\left|x-18\right|=2^{2020-2018}=2^2=4\)
\(\Rightarrow\orbr{\begin{cases}x-18=4\\x-18=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=14\end{cases}}}\)
d) \(6x-36=2^3.3^2\)
\(6x-36=72\)
\(6x=108\)
\(x=18\)
e) \(\left|x-5\right|=8\)
\(\Rightarrow\orbr{\begin{cases}x-5=8\\x-5=-8\end{cases}\Rightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}}\)
hok tốt!!
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)