K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

\(6x^3-11x^2-x-2=0\)

<=>\(6x^3-12x^2+x^2-2x+x-2=0\)

<=>\(\left(6x^2+x+1\right)\left(x-2\right)=0\)

Vì 6x^2+x+1>0=>x-2=0,=>x=2

 

22 tháng 9 2019

Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết

22 tháng 9 2019

a) \(x^3-4x^2-12x+27\)

\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

b) \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)

b) \(6x-9-x^2=-\left(x-3\right)^2\)

5 tháng 7 2015

đặt y=x2+1

=>y2=(x2+1)2

y2=x4+2x2+1

đặt P(x)=x^4+6x^3+11x^2+6x+1

=x4+2x2+1+6x3+6x+9x2

=x4+2x+1+6x(x2+1)+9x2

thay y2=x4+2x2+1 và y=x2+1 ta được 

Q(y)=y2+6xy+9x2

=(y+3x)2

thay y=x2+1 ta được:

(x2+3x+1)2

vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2

9 tháng 10 2016

a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)

\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\) 

Đặt: \(x^2-7x+11=t\)

\(\Rightarrow\hept{\begin{cases}x^2-7x+10=t-1\\x^2-7x+12=t+1\end{cases}}\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)

\(=\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Vậy: \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left(x^2-7x+11\right)^2\)

7 tháng 11 2016

a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)

Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3

=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}

b/ Chia F(x) cho x-1

\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)

Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại

21 tháng 6 2017

Bài 3. a) x(x-2)-2x+x=0

       <=> x2-2x-2x+x=0

       <=>x2-4x+x=0

       <=>x2-3x=0

      <=> x(x-3)=0 => x=0; x=3.

1 tháng 11 2015

\(x^3-x^2-8x+12\)

\(=x^3+3x^2-4x^2-12x+4x+12\)

\(=x^2\left(x+3\right)-4x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-4x+4\right)\)

\(=\left(x+3\right)\left(x-2\right)^2\)