Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
Lời giải:
a)
\(2(x+3)-x^2-3x=0\)
\(\Leftrightarrow 2(x+3)-(x^2+3x)=0\)
\(\Leftrightarrow 2(x+3)-x(x+3)=0\Leftrightarrow (2-x)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} 2-x=0\\ x+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
b)
Theo định lý Bê-du về phép chia đa thức thì để đa thức đã cho chia hết cho $3x-1$ thì:
\(f(\frac{1}{3})=3.(\frac{1}{3})^3+2(\frac{1}{3})^2-7.\frac{1}{3}+a=0\)
\(\Leftrightarrow -2+a=0\Leftrightarrow a=2\)
c) Ta có:
\(2n^2+3n+3\vdots 2n-1\)
\(\Leftrightarrow 2n^2-n+4n+3\vdots 2n-1\)
\(\Leftrightarrow n(2n-1)+(4n-2)+5\vdots 2n-1\)
\(\Leftrightarrow n(2n-1)+2(2n-1)+5\vdots 2n-1\)
\(\Leftrightarrow 5\vdots 2n-1\Rightarrow 2n-1\in \text{Ư}(5)\)
\(\Rightarrow 2n-1\in\left\{\pm 1; \pm 5\right\}\Rightarrow n\in\left\{0; 1; 3; -2\right\}\)
Vậy.................
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
Đề phép chia hết thì dư a - 30 phải bằng 0 tức là
a - 30 = 0 => a = 30
Vậy a = 30.
a) 541 + (218 - x) = 735
Suy ra 218 - x = 735 - 541 hay 218 - x = 194.
Do đó x = 218 - 194. Vậy x = 24.
b) 5(x + 35) = 515 suy ra x + 35 = 515 : 5 = 103.
Do đó x = 103 - 35 =68.
c) Từ 96 - 3(x + 1) = 42 suy ra 3(x + 1) = 96 - 42 = 54. Do đó x + 1 = 54 : 3 = 18. Vậy x = 18 - 1 hay x = 17.
d) Từ 12x - 33 = 32 . 33 hay 12x - 33 = 243 suy ra 12x = 243 + 33 hay 12x = 276. Vậy x = 23.
a: \(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1+a-4⋮3x+1\)
=>a-4=0
hay a=4
c: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Ta có :
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
Vậy \(n=4\)
Chúc bạn học tốt ~
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)
Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)
\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)
Chúc bạn học tốt ~
Thực hiện phép chia đa thức, ta có:
\(3x^3+2x^2-7x+a=\left(3x-1\right).\left(x^2+x-2\right)+a-2\)
Để đa thức \(3x^3+2x^2-7x+a\)chia hết cho đa thức 3x-1 thì a-2=0=> a=2
Đặt \(f\left(x\right)=3x^3+2x^2-7x+a\)
Áp dụng định lý Bezout:
\(f\left(x\right)=3x^3+2x^2-7x+a\)chia hết cho đa thức 3x - 1
\(\Leftrightarrow f\left(\frac{1}{3}\right)=0\)
\(\Leftrightarrow3.\left(\frac{1}{3}\right)^3+2.\left(\frac{1}{3}\right)^2-7.\frac{1}{3}+a=0\)
\(\Leftrightarrow\frac{1}{9}+\frac{2}{9}-\frac{7}{3}+a=0\)
\(\Leftrightarrow\frac{1}{3}-\frac{7}{3}+a=0\)
\(\Leftrightarrow-2+a=0\)
\(\Leftrightarrow a=2\)
Vậy a = 2 thì \(f\left(x\right)=3x^3+2x^2-7x+a\)chia hết cho đa thức 3x - 1