Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
\(x^4+4x^2-5\)
\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)
a: x^3-7x-6
=x^3-x-6x-6
=x(x-1)(x+1)-6(x+1)
=(x+1)(x^2-x-6)
=(x-3)(x+2)(x+1)
b: =2x^3+x^2-2x^2-x+6x+3
=x^2(2x+1)-x(2x+1)+3(2x+1)
=(2x+1)(x^2-x+3)
c: =2x^3-3x^2-2x^2+3x+2x-3
=x^2(2x-3)-x(2x-3)+(2x-3)
=(2x-3)(x^2-x+1)
d: =2x^3+x^2+2x^2+x+2x+1
=(2x+1)(x^2+x+1)
e: =3x^3+x^2-3x^2-x+6x+2
=(3x+1)(x^2-x+2)
f: =27x^3-9x^2-18x^2+6x+12x-4
=(3x-1)(9x^2-6x+4)
a) \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
b) \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(x^2-x+3\right)\left(2x+1\right)\)
c) \(2x^3-5x^2+5x+1\)
\(=2x^3-3x^2-2x^2+3x+2x-3\)
\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)
\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)
\(=\left(x^2-x+1\right)\left(2x-3\right)\)
d) \(2x^3+3x^2+3x+1\)
\(=2x^3+x^2+2x^2+x+2x+1\)
\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)
\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(3x^3-2x^2+5x+2\)
\(=3x^3+x^2-3x^2-x+6x+2\)
\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)
\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)
\(=\left(3x-1\right)\left(x^2-x+2\right)\)
f) \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
Bài 1:
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^3-10x^2-6x\)
Bài 4:
a: =>3x+10-2x=0
=>x=-10
c: =>3x2-3x2+6x=36
=>6x=36
hay x=6
Bài 1:
\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)
Bài 4:
\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)
Bài 1:
\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)
1)\(x^4+2x^3+x^2\)
=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra
=\(x^2\left(x+1\right)^2\)
2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
=\(\left(x+y\right)^3-\left(x+y\right)\)
=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)
3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)
=\(\left(x+y\right)^2-4z^2\)
=\(\left(x+y+2z\right)\left(x+y-2z\right)\)
4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)^2\)
=\(\left(x-y\right)\left(2-x+y\right)\)
k chi nha
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
Sorry mk ghi nhầm
C= (x2-1)(x2+2x+4)=(x+1)(x-1)(x2+2x+4)
thì m cứ tách bọn nó ra. tách cho bao giờ ko tách dc nữa thì thôi , nếu tách mãi tách mãi mà vẫn ko dc thì mày kết luận 1 câu là đề sai thế thôi