K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

Sorry mk ghi nhầm 

C= (x2-1)(x2+2x+4)=(x+1)(x-1)(x2+2x+4)

16 tháng 1 2018

thì m cứ tách bọn nó ra. tách cho bao giờ ko tách dc nữa thì thôi , nếu tách mãi tách mãi mà vẫn ko dc thì mày kết luận 1 câu là đề sai thế thôi

9 tháng 9 2016

Dễ nhưng mà dài chết người oegianroi

10 tháng 9 2016

giải dùm mình với đi ạ,mình cảm ơn

 

10 tháng 9 2016

Bài 1 : 

x2-2x+2>0 với mọi x

=x2-2.x.1/4+1/16+31/16

=(x-1/4)2 + 31/16

Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)

11 tháng 9 2016

thanks

 

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

2 tháng 8 2018

\(x^4+4x^2-5\)

\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-9\)

\(=\left(x^2+2\right)^2-9\)

\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

2 tháng 8 2018

a)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2-5\right)\left(x^2-1\right)\)

a: x^3-7x-6

=x^3-x-6x-6

=x(x-1)(x+1)-6(x+1)

=(x+1)(x^2-x-6)

=(x-3)(x+2)(x+1)

b: =2x^3+x^2-2x^2-x+6x+3

=x^2(2x+1)-x(2x+1)+3(2x+1)

=(2x+1)(x^2-x+3)

c: =2x^3-3x^2-2x^2+3x+2x-3

=x^2(2x-3)-x(2x-3)+(2x-3)

=(2x-3)(x^2-x+1)

d: =2x^3+x^2+2x^2+x+2x+1

=(2x+1)(x^2+x+1)

e: =3x^3+x^2-3x^2-x+6x+2

=(3x+1)(x^2-x+2)

f: =27x^3-9x^2-18x^2+6x+12x-4

=(3x-1)(9x^2-6x+4)

29 tháng 8 2023

a) \(x^3-7x-6\)

\(=x^3-x-6x-6\)

\(=\left(x^3-x\right)-\left(6x+6\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

b) \(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(x^2-x+3\right)\left(2x+1\right)\)

c) \(2x^3-5x^2+5x+1\)

\(=2x^3-3x^2-2x^2+3x+2x-3\)

\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)

\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)

\(=\left(x^2-x+1\right)\left(2x-3\right)\)

d) \(2x^3+3x^2+3x+1\)

\(=2x^3+x^2+2x^2+x+2x+1\)

\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)

\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\)

e) \(3x^3-2x^2+5x+2\)

\(=3x^3+x^2-3x^2-x+6x+2\)

\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)

\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)

\(=\left(3x-1\right)\left(x^2-x+2\right)\)

f) \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

Bài 1: 

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^3-10x^2-6x\)

Bài 4: 

a: =>3x+10-2x=0

=>x=-10

c: =>3x2-3x2+6x=36

=>6x=36

hay x=6

4 tháng 1 2022

Bài 1:

\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)

Bài 4:

\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)

Bài 1:

\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)

9 tháng 7 2016

1)\(x^4+2x^3+x^2\)

=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra

=\(x^2\left(x+1\right)^2\)

2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

=\(\left(x+y\right)^3-\left(x+y\right)\)

=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)

3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)

=\(\left(x+y\right)^2-4z^2\)

=\(\left(x+y+2z\right)\left(x+y-2z\right)\)

4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)^2\)

=\(\left(x-y\right)\left(2-x+y\right)\)

k chi nha

30 tháng 9 2021

a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)

b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)

30 tháng 9 2021

cảm ơn