Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)
Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 }
b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = { -2 ; 3 }
c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)
Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 }
d, \(\left|3x+1\right|=x-2\)
TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)
TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)
Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 }
các ý còn lại tương tự
a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)
Vậy: S={3;4;1;2}
a: \(x\left(x-1\right)+2x^2-2=0\)
=>\(x\left(x-1\right)+2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x-1\right)\left(x+2x+2\right)=0\)
=>(x-1)(3x+2)=0
=>\(\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
=>\(\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
=>\(\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
=>(3x+1)(x+2)=0
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
\(a)2x-3=4x+6\\ \Rightarrow2x=-9\\ \Rightarrow x=-\dfrac{9}{2}\\ c)x\left(x-1\right)+x\left(x+3\right)=0\\ \Rightarrow x^2-x+x^2+3x=0\\ \Rightarrow2x^2+2x=0\\ \Rightarrow2x\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)
Bài 1: Giải các bất phương trình sau
a) x+1/x+3 > 1
b) 2x-1/x-3 ≤ 2
c) x2+2x+2/x2+3 ≥ 1
d) 2x+1/x2+2 ≥ 1
a, \(\dfrac{x+1}{x+3}>1\Leftrightarrow\dfrac{x+1}{x+3}-1>0\Leftrightarrow\dfrac{x+1-x-3}{x+3}>0\)
\(\Rightarrow x+3< 0\)do -2 < 0
\(\Rightarrow x< -3\)Vậy tập nghiệm BFT là S = { x | x < -3 }
b, \(\dfrac{2x-1}{x-3}\le2\Leftrightarrow\dfrac{2x-1}{x-3}-2\le0\Leftrightarrow\dfrac{2x-1-2x+6}{x-3}\le0\)
\(\Rightarrow x-3\le0\)do 5 > 0
\(\Rightarrow x\le3\)Vậy tập nghiệm BFT là S = { x | x \(\le\)3 }
c, \(\dfrac{x^2+2x+2}{x^2+3}\ge1\Leftrightarrow\dfrac{x^2+2x+2}{x^2+3}-1\ge0\)
\(\Leftrightarrow\dfrac{x^2+2x+2-x^2-3}{x^2+3}\ge0\Rightarrow2x-1\ge0\)do x^2 + 3 > 0
\(\Rightarrow x\ge\dfrac{1}{2}\)Vậy tập nghiệm BFT là S = { x | x \(\ge\)1/2 }
mình ko chắc nên mình đăng sau :>
d, \(\dfrac{2x+1}{x^2+2}\ge1\Leftrightarrow\dfrac{2x+1}{x^2+2}-1\ge0\Leftrightarrow\dfrac{2x+1-x^2-2}{x^2+2}\ge0\)
\(\Rightarrow-x^2+2x-1\ge0\Rightarrow-\left(x-1\right)^2\ge0\)vô lí
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
a/
\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)
\(\Leftrightarrow6-6x=0\)
=> x=1
\(a,\left(2x-3\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=-2\end{matrix}\right.\\ b,2x-\left(3-5x\right)=4\left(x+3\right)\\ \Leftrightarrow2x-3+5x=4x+12\\ \Leftrightarrow7x-3-4x-12=0\\ \Leftrightarrow3x-15=0\\ \Leftrightarrow x=5\)
\(c,ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{1}{x-2}-\dfrac{2}{x+1}=\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x+1}{\left(x-2\right)\left(x+1\right)}-\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x+1-x+2-11+3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow3x-8=0\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)
a) (2x-1)(3-2x)=0
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\3-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}}\)
b) x(x-1)\(\left(x+\frac{3}{4}\right)\)=0
<=> x=0 hoặc x-1=0 hoặc \(x+\frac{3}{4}=0\)
<=> x=0 hoặc x=1 hoặc \(x=\frac{-3}{4}\)
Vậy \(x=\left\{0;1;\frac{-3}{4}\right\}\)
a,\(\left(2x-1\right).\left(3-2x\right)=0\)
\(< =>\orbr{\begin{cases}2x-1=0\\3-2x=0\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=1\\3=2x\end{cases}< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{2}{3}\end{cases}}}\)