K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

bài 2

a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54

<=> 

\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1

13 tháng 4 2018

Bài 1 : 

\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow\)\(2n+2-2n-3⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)

Do đó : 

\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~ 

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

15 tháng 4 2019

a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)

nên \(\frac{17}{19}< 1< \frac{19}{17}\)

hay \(\frac{17}{19}< \frac{19}{17}\)

b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)

Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)

15 tháng 4 2019

\(A=\frac{54.107-53}{53.107+54}\)

\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)

\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)

\(\Leftrightarrow A=1\)

\(B=\frac{135.269-133}{134.269+135}\)

\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)

\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)

\(\Leftrightarrow B=1\)

Vì 1 = 1 nên A =B

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản

24 tháng 7 2020

a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d

=> n+1 \(⋮\)d

2n+3 \(⋮\)d

=> 2(n+1) \(⋮\)d

2n+ 3 \(⋮\)d

=> 2n+2 \(⋮\)d

2n+3 \(⋮\)d

=> 2n+3 - 2n -2 \(⋮\)d

=> 1 \(⋮\)d

=> d =1

Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản

Phần b cũng thế nha 

24 tháng 7 2020

Gọi ƯCLN(n + 1 ; 2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

=> \(1⋮d\Rightarrow d=1\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\) là phân số tối giản

b Gọi ƯCLN(2n + 3 ; 4n + 8) = d

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\) 

=>  \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)

Vì \(2n+3\)là số lẻ với mọi n nguyên

=> 2n + 3 không chia hết cho 2 

=> \(d\ne2\)=> d = 1

Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau

=> B là phân số tối giản

23 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

5 tháng 5 2019

a, \(\frac{n+2}{n+3}\)

Gọi \(d=ƯCLN\left(n+2,n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản

5 tháng 5 2019

b, \(\frac{n+1}{2n+3}\)

Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

7 tháng 6 2016

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

7 tháng 6 2016

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

7 tháng 5 2018

a) 27/82 < 26/75 ( 2025/6250 < 2132\6250)

b) -49/78 > 64/ -95 ( - 3136/7410 > -4992/7410)

c) ta có: \(A=\frac{54.107-53}{53.107}=\frac{53.107+(107-53)}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)

\(B=\frac{135.269-133}{134.269+135}=\frac{134.269+\left(269-133\right)}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)

\(\Rightarrow A< B\)

d) ta có: \(A=\frac{3^{10}+1}{3^9+1}=\frac{3.\left(3^9+1\right)-2}{3^9+1}=\frac{3.\left(3^9+1\right)}{3^9+1}-\frac{2}{3^9+1}=3-\frac{2}{3^9+1}\)

\(B=\frac{3^9+1}{3^8+1}=\frac{3.\left(3^8+1\right)-2}{3^8+1}=\frac{3.\left(3^8+1\right)}{3^8+1}-\frac{2}{3^8+1}=3-\frac{2}{3^8+1}\)

mà \(\frac{2}{3^9+1}< \frac{2}{3^8+1}\Rightarrow3-\frac{2}{3^9+1}< 3-\frac{2}{3^8+1}\)

=> A < B

11 tháng 5 2018

Cảm ơn Công chúa Ori nhìu nha