Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{HOA}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
Suy ra: OH=OK(hai cạnh tương ứng)
Xét ΔOHK có OH=OK(cmt)
nên ΔOHK cân tại O(Định nghĩa tam giác cân)
b) Ta có: OK+KA=OA(K nằm giữa O và A)
OH+HB=OB(H nằm giữa O và B)
mà OA=OB(gt)
và OK=OH(cmt)
nên KA=HB
Ta có: ΔOBK=ΔOAH(cmt)
nên \(\widehat{OBK}=\widehat{OAH}\)(hai góc tương ứng)
hay \(\widehat{HBI}=\widehat{KAI}\)
Xét ΔHBI vuông tại H và ΔKAI vuông tại K có
HB=KA(cmt)
\(\widehat{HBI}=\widehat{KAI}\)(cmt)
Do đó: ΔHBI=ΔKAI(cạnh góc vuông-góc nhọn kề)
Suy ra: BI=AI(Hai cạnh tương ứng)
Xét ΔAOI và ΔBOI có
OA=OB(gt)
OI chung
IA=IB(cmt)
Do đó: ΔAOI=ΔBOI(c-c-c)
Suy ra: \(\widehat{AOI}=\widehat{BOI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{xOI}=\widehat{yOI}\)
mà tia OI nằm giữa hai tia Ox, Oy
nên OI là tia phân giác của \(\widehat{xOy}\)(đpcm)
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{AOB}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
Suy ra: AH=BK(hai cạnh tương ứng)
Cm : a) Xét t/giác OAH và t/giác OBK
có: \(\widehat{OHA}=\widehat{OKB}=90^0\) (gt)
OA = OB (gt)
\(\widehat{O}\) :chung
=> t/giác OAH = t/giác OBK (ch - gn)
b) Xét t/giác OMH và t/giác OMK
có: \(\widehat{OHM}=\widehat{OKM}=90^0\) (gt)
OH = OK (vì t/giác OAH = t/giác OBK)
OM : chung
=> t/giác OMH = t/giác OMK (ch - cgv)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc t/ứng)
=> OM là tia p/giác của góc xOy
a: Xét ΔOKB vuông tại K và ΔOHA vuông tại H có
OB=OA
\(\widehat{O}\) chung
Do đó: ΔOKB=ΔOHA
Suy ra: OK=OH
hay ΔOHK cân tại O
a: Xét ΔOKB vuông tại K và ΔOHA vuông tại H có
OB=OA
\(\widehat{O}\) chung
Do đó: ΔOKB=ΔOHA
Suy ra: OK=OH
hay ΔOHK cân tại O
a: Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB
\(\widehat{O}\) chung
Do đó: ΔOHA=ΔOKB
Suy ra: OH=OK