Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
Vì \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{abc}{bcd}=\dfrac{a}{d}\)
\(\Rightarrowđpcm\)
Cách 1:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{b.k+b}{d.k+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\) (1)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(b.k\right)^3+b^3}{\left(d.k\right)^3+d^3}=\frac{b^3.k^3+b^3}{d^3.k^3+d^3}=\frac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\frac{b^3}{d^3}\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
\(b^2\)= \(ac\)=> \(\frac{a}{b}\)= \(\frac{b}{c}\)(1)
\(c^2\)= \(bd\)=> \(\frac{b}{c}\)= \(\frac{c}{d}\)(2)
từ (1) và (2) => \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)* \(\frac{b}{c}\)* \(\frac{c}{d}\)= \(\frac{a}{d}\) (*)
\(\frac{a^3}{b^3}\)= \(\frac{b^3}{c^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (**)
Từ (*) và (**) => \(\frac{a}{d}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (đpcm)
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)
c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=> Đpcm