K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

Bài 3:

23 tháng 10 2019

Thanks bn

22 tháng 12 2023

a)

Xét 2 tam giác vuông ABC và HAC có:

\(\widehat{C}\) chung

=> tg ABC \(\sim\) td HAC (g.g)

=> \(\widehat{ABC}=\widehat{HAC}\)

b)

Xét 2 tg vuông ACB và HAB có:

\(\widehat{B}\) chung

=> tg ACB \(\sim\) tg HAB (g.g)

=> \(\widehat{ACB}=\widehat{HAB}\)

22 tháng 12 2023

g.g là gì???

23 tháng 11 2021

\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

14 tháng 10 2017

A B C H

a) Tổng các góc trong tam giác bằng 180 độ, trong tam giác vuông, hai góc nhọn phụ nhau (có tổng bằng 90 độ).

Trong tam giác vuông ABC, góc \(\widehat{B}\) phụ với góc \(\widehat{C}\)

Trong tam giác vuong HAC, góc \(\widehat{HAC}\)  phụ với góc \(\widehat{C}\)

=> Góc \(\widehat{B}=\widehat{HAC}\) vì cùng phụ với góc \(\widehat{C}\).

b) Câu b làm tương tự.

30 tháng 10 2018

a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)

\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)

Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM

b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)

=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)

Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)

=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)

Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)

\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)

\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)

\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)

c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)

\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)

17 tháng 9 2023

Ta có: AB < AC nên \(\widehat {ACB} < \widehat {ABC}\) (góc ACB đối diện với cạnh AB; góc ABC đối diện với cạnh AC)

Mà tam giác ADB và tam giác ADC vuông tại D.

Vì tổng hai góc nhọn trong một tam giác vuông bằng 90°.

Mà \(\widehat {ACB} < \widehat {ABC}\).

Suy ra: \(90^\circ  - \widehat {ACB} > 90^0 - \widehat {ABC}\) hay \(\widehat {DAC} > \widehat {DAB}\).

Vậy \(\widehat {HAC} > \widehat {HAB}\) hay \(\widehat {HAB} < \widehat {HAC}\).

Suy ra: A, B, D sai.

Đáp án: C.\(\widehat {HAB} = \widehat {HCB}\).