K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

NV
29 tháng 7 2021

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

Chọn D

NV
4 tháng 3 2022

Trừ vế cho vế:

\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)

- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)

Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m

Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)

Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)

Ta có:

\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)

\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)

Vậy \(m>16\) thì hệ có 1 nghiệm

4 tháng 3 2022

em tính nhầm cái delta>0=)). Em cảm ơn thầy ạ

28 tháng 7 2019
https://i.imgur.com/Zdtaxi4.jpg
28 tháng 7 2019

kết quả cuối cùng là bao nhiêu vậy bạn

NV
13 tháng 5 2019

Bài 1: dưới mẫu không biết biểu thức là gì

Bài 2:

Gọi \(M\in d\Rightarrow M\left(1+2m;3-m\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(2m;5-m\right)\)

\(\Rightarrow AM^2=\overrightarrow{AM}^2=4m^2+\left(5-m\right)^2=25\)

\(\Leftrightarrow5m^2-10m+25=25\)

\(\Leftrightarrow5m\left(m-2\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(1;3\right)\\M\left(5;1\right)\end{matrix}\right.\)

13 tháng 5 2019

@Nguyễn Việt Lâm dưới mẫu là 2x^2-mx +2

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
NV
1 tháng 3 2020

1. Bạn ghi lại đề, mẫu số ko rõ

2. \(=lim\left[-8n^6\left(1-\frac{4}{n^2}\right)^3\right]=-\infty.1=-\infty\)

3. Dãy số là CSC với \(\left\{{}\begin{matrix}u_1=-1\\d=3\end{matrix}\right.\) \(\Rightarrow u_n=-1+\left(n-1\right)3=3n-4\)

\(\Rightarrow lim\frac{3n-4}{5n+2020}=lim\frac{3-\frac{4}{n}}{5+\frac{2020}{n}}=\frac{3}{5}\)

4.

\(u_{n+1}=\frac{1}{2}u_n+\frac{3}{2}\Rightarrow u_{n+1}-3=\frac{1}{2}\left(u_n-3\right)\)

Đặt \(v_n=u_n-3\Rightarrow\left\{{}\begin{matrix}v_1=-2\\v_{n+1}=\frac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\frac{1}{2}\Rightarrow v_n=-2.\frac{1}{2^{n-1}}\Rightarrow u_n=v_n+3=-\frac{1}{2^{n-2}}+3\)

\(\Rightarrow lim\left(u_n\right)=lim\left[-\frac{1}{2^{n-2}}+3\right]=3\)

5.

\(u_{n+1}=u_n+\frac{1}{2^n}\Rightarrow u_{n+1}+\frac{2}{2^{n+1}}=u_n+\frac{2}{2^n}\)

Đặt \(v_n=u_n+\frac{2}{2^n}\Rightarrow\left\{{}\begin{matrix}v_1=3\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=...=v_1=3\Rightarrow u_n=3-\frac{2}{2^n}\)

\(\Rightarrow u_{n-2}=3-\frac{2}{2^{n-2}}\Rightarrow lim\left(u_{n-2}\right)=lim\left(3-\frac{2}{2^{n-2}}\right)=3\)

Tính \(u_{n-2}\) hay \(u_n-2\) nhỉ? Ko dịch nổi nên đoán đại

NV
29 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^4+y^4=34\\y=2-x\end{matrix}\right.\)

\(\Rightarrow x^4+\left(x-2\right)^4=34\)

Đặt \(x-1=t\)

\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)

\(\Leftrightarrow t^4+6t^2-16=0\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\Rightarrow x=\sqrt{2}+1\Rightarrow y=1-\sqrt{2}\\t=-\sqrt{2}\Rightarrow x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\end{matrix}\right.\)

NV
29 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy^2-x^2y+6x-y^2-y-6=0\\x^2y-xy^2+6y-x^2-x-6=0\end{matrix}\right.\) (1)

Lần lượt cộng 2 vế và trừ 2 vế ta được:

\(\left\{{}\begin{matrix}-x^2-y^2+5x+5y-12=0\\2xy\left(y-x\right)+7\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-5\left(x+y\right)+12=0\\\left(y-x\right)\left(2xy-x-y-7\right)=0\end{matrix}\right.\)

Th1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)

\(\Rightarrow2x^2-10x+12=0\Rightarrow...\)

TH2: \(\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\\left(x+y\right)^2-2xy-5\left(x+y\right)+12=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2v-u-7=0\\u^2-2v-5u+12=0\end{matrix}\right.\)

\(\Rightarrow u^2-6u+5=0\)

\(\Leftrightarrow...\)