Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
Ta có : \(x+y=3\Rightarrow\left(x+y\right)^2=3^2=9\)
\(=x^2+2xy+y^2=9\)
\(\Rightarrow x^2+y^2+2.2=9\)
\(\Rightarrow x^2+y^2+4=9\)
\(\Rightarrow x^2+y^2=5\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(x^2+y^2-2\right)\)
\(=3\left(5-2\right)=3.3=9\)
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 - 2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......
P = x(x - y) - x + y2(x - y) - y2 + 5
P = x - x + y2 - y2 + 5
P = 5
Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015
Q = 5 - 2015
Q = -2010
theo gt
11x+6y+2015=0
x-y+3=0=>x=y-3
thay vô biến đổi chút là ra